
1
Introduction to

Regular Expressions

Her e’s the scenario: you’re given the job of checking the pages on a web server
for doubled words (such as “this this”), a common problem with documents sub-
ject to heavy editing. Your job is to create a solution that will:

• Accept any number of files to check, report each line of each file that has
doubled words, highlight (using standard ANSI escape sequences) each dou-
bled word, and ensure that the source filename appears with each line in the
report.

• Work across lines, even finding situations where a word at the end of one line
is repeated at the beginning of the next.

• Find doubled words despite capitalization differ ences, such as with ‘The
the˙˙˙’, as well as allow differing amounts of whitespace (spaces, tabs, new-
lines, and the like) to lie between the words.

• Find doubled words even when separated by HTML tags. HTML tags are for
marking up text on World Wide Web pages, for example, to make a word
bold: ‘˙˙˙it is very very important˙˙˙’.

That’s certainly a tall order! But, it’s a real problem that needs to be solved. At one
point while working on the manuscript for this book, I ran such a tool on what I’d
written so far and was surprised at the way numerous doubled words had crept in.
Ther e ar e many programming languages one could use to solve the problem, but
one with regular expression support can make the job substantially easier.

Regular expressions ar e the key to powerful, flexible, and efficient text processing.
Regular expressions themselves, with a general pattern notation almost like a mini
pr ogramming language, allow you to describe and parse text. With additional sup-
port provided by the particular tool being used, regular expressions can add,
remove, isolate, and generally fold, spindle, and mutilate all kinds of text and data.

1

27 April 2003 17:11

2 Chapter 1: Introduction to Regular Expressions

It might be as simple as a text editor’s search command or as powerful as a full
text processing language. This book shows you the many ways regular expres-
sions can increase your productivity. It teaches you how to think regular expres-
sions so that you can master them, taking advantage of the full magnitude of their
power.

A full program that solves the doubled-word problem can be implemented in just
a few lines of many of today’s popular languages. With a single regular-expr ession
search-and-r eplace command, you can find and highlight doubled words in the
document. With another, you can remove all lines without doubled words (leaving
only the lines of interest left to report). Finally, with a third, you can ensure that
each line to be displayed begins with the name of the file the line came from.
We’ll see examples in Perl and Java in the next chapter.

The host language (Perl, Java, VB.NET, or whatever) provides the peripheral pro-
cessing support, but the real power comes from regular expressions. In harnessing
this power for your own needs, you learn how to write regular expressions to
identify text you want, while bypassing text you don’t. You can then combine your
expr essions with the language’s support constructs to actually do something with
the text (add appropriate highlighting codes, remove the text, change the text, and
so on).

Solving Real Problems
Knowing how to wield regular expressions unleashes processing powers you
might not even know were available. Numerous times in any given day, regular
expr essions help me solve problems both large and small (and quite often, ones
that are small but would be large if not for regular expressions).

Showing an example that provides the key to solving a large and important prob-
lem illustrates the benefit of regular expressions clearly, but perhaps not so obvi-
ous is the way regular expressions can be used throughout the day to solve rather
“uninter esting” pr oblems. I use “uninteresting” in the sense that such problems are
not often the subject of bar-r oom war stories, but quite interesting in that until
they’r e solved, you can’t get on with your real work.

As a simple example, I needed to check a lot of files (the 70 or so files comprising
the source for this book, actually) to confirm that each file contained ‘SetSize’
exactly as often (or as rarely) as it contained ‘ResetSize’. To complicate matters, I
needed to disregard capitalization (such that, for example, ‘setSIZE’ would be
counted just the same as ‘SetSize’). Inspecting the 32,000 lines of text by hand
certainly wasn’t practical.

27 April 2003 17:11

Even using the normal “find this word” search in an editor would have been ardu-
ous, especially with all the files and all the possible capitalization differ ences.

Regular expressions to the rescue! Typing just a single, short command, I was able
to check all files and confirm what I needed to know. Total elapsed time: perhaps
15 seconds to type the command, and another 2 seconds for the actual check of
all the data. Wow! (If you’re inter ested to see what I actually used, peek ahead to
page 36.)

As another example, I was once helping a friend with some email problems on a
remote machine, and he wanted me to send a listing of messages in his mailbox
file. I could have loaded a copy of the whole file into a text editor and manually
removed all but the few header lines from each message, leaving a sort of table of
contents. Even if the file wasn’t as huge as it was, and even if I wasn’t connected
via a slow dial-up line, the task would have been slow and monotonous. Also, I
would have been placed in the uncomfortable position of actually seeing the text
of his personal mail.

Regular expressions to the rescue again! I gave a simple command (using the com-
mon search tool egr ep described later in this chapter) to display the From: and
Subject: line from each message. To tell egr ep exactly which kinds of lines I
wanted to see, I used the regular expression !ˆ(From;Subject): ".

Once he got his list, he asked me to send a particular (5,000-line!) message. Again,
using a text editor or the mail system itself to extract just the one message would
have taken a long time. Rather, I used another tool (one called sed) and again
used regular expressions to describe exactly the text in the file I wanted. This way,
I could extract and send the desired message quickly and easily.

Saving both of us a lot of time and aggravation by using the regular expression
was not “exciting,” but surely much more exciting than wasting an hour in the text
editor. Had I not known regular expressions, I would have never considered that
ther e was an alternative. So, to a fair extent, this story is repr esentative of how
regular expressions and associated tools can empower you to do things you might
have never thought you wanted to do.

Once you learn regular expressions, you’ll realize that they’re an invaluable part of
your toolkit, and you’ll wonder how you could ever have gotten by without them.†

A full command of regular expressions is an invaluable skill. This book provides
the information needed to acquire that skill, and it is my hope that it provides the
motivation to do so, as well.

† If you have a TiVo, you already know the feeling!

Solving Real Problems 3

27 April 2003 17:11

4 Chapter 1: Introduction to Regular Expressions

Regular Expressions as a Language
Unless you’ve had some experience with regular expressions, you won’t under-
stand the regular expression !ˆ(From;Subject): " fr om the last example, but
ther e’s nothing magic about it. For that matter, ther e is nothing magic about magic.
The magician merely understands something simple which doesn’t appear to be
simple or natural to the untrained audience. Once you learn how to hold a card
while making your hand look empty, you only need practice before you, too, can
“do magic.” Like a foreign language — once you learn it, it stops sounding like
gibberish.

The Filename Analogy
Since you have decided to use this book, you probably have at least some idea of
just what a “regular expression” is. Even if you don’t, you are almost certainly
alr eady familiar with the basic concept.

You know that report.txt is a specific filename, but if you have had any experience
with Unix or DOS/Windows, you also know that the pattern “+.txt” can be used
to select multiple files. With filename patterns like this (called file globs or wild-
car ds), a few characters have special meaning. The star means “match anything,”
and a question mark means “match any one character.” So, with the file glob
“+.txt”, we start with a match-anything ! + " and end with the literal ! .txt ", so we
end up with a pattern that means “select the files whose names start with anything
and end with .txt”.

Most systems provide a few additional special characters, but, in general, these
filename patterns are limited in expressive power. This is not much of a shortcom-
ing because the scope of the problem (to provide convenient ways to specify
gr oups of files) is limited, well, simply to filenames.

On the other hand, dealing with general text is a much larger problem. Prose and
poetry, program listings, reports, HTML, code tables, word lists... you name it, if a
particular need is specific enough, such as “selecting files,” you can develop some
kind of specialized scheme or tool to help you accomplish it. However, over the
years, a generalized pattern language has developed, which is powerful and
expr essive for a wide variety of uses. Each program implements and uses them
dif ferently, but in general, this powerful pattern langua ge and the patterns them-
selves are called regular expressions.

27 April 2003 17:11

The Language Analog y
Full regular expressions are composed of two types of characters. The special
characters (like the + fr om the filename analogy) are called metacharacters, while
the rest are called literal, or nor mal text characters. What sets regular expressions
apart from filename patterns are the advanced expressive powers that their meta-
characters provide. Filename patterns provide limited metacharacters for limited
needs, but a regular expression “language” provides rich and expressive metachar-
acters for advanced uses.

It might help to consider regular expressions as their own language, with literal
text acting as the words and metacharacters as the grammar. The words are com-
bined with grammar according to a set of rules to create an expression that com-
municates an idea. In the email example, the expression I used to find lines
beginning with ‘From:’ or ‘Subject:’ was !ˆ(From;Subject):". The metachar-
acters are underlined; we’ll get to their interpretation soon.

As with learning any other language, regular expressions might seem intimidating
at first. This is why it seems like magic to those with only a superficial understand-
ing, and perhaps completely unapproachable to those who have never seen it at
all. But, just as abcdefghi!† would soon become clear to a student of
Japanese, the regular expression in

s!<emphasis>([0-9]+(\.[0-9]+){3})</emphasis>!<inet>$1</inet>!

will soon become crystal clear to you, too.

This example is from a Perl language script that my editor used to modify a
manuscript. The author had mistakenly used the typesetting tag <emphasis> to
mark Internet IP addr esses (which are sets of periods and numbers that look like
209.204.146.22). The incantation uses Perl’s text-substitution command with the
regular expression

!<emphasis>([0-9]+(\.[0-9]+){3})</emphasis> "

to replace such tags with the appropriate <inet> tag, while leaving other uses of
<emphasis> alone. In later chapters, you’ll learn all the details of exactly how this
type of incantation is constructed, so you’ll be able to apply the techniques to
your own needs, with your own application or programming language.

† “Regular expressions are easy!” A somewhat humorous comment about this: as Chapter 3 explains,
the term regular expression originally comes from formal algebra. When people ask me what my
book is about, the answer “regular expressions” draws a blank face if they are not already familiar
with the concept. The Japanese word for regular expression, abcd, means as little to the average
Japanese as its English counterpart, but my reply in Japanese usually draws a bit more than a blank
star e. You see, the “regular” part is unfortunately pronounced identically to a much more common
word, a medical term for “repr oductive organs.” You can only imagine what flashes through their
minds until I explain!

Regular Expressions as a Language 5

27 April 2003 17:11

6 Chapter 1: Introduction to Regular Expressions

The goal of this book

The chance that you will ever want to replace <emphasis> tags with <inet> tags
is small, but it is very likely that you will run into similar “replace this with that”
pr oblems. The goal of this book is not to teach solutions to specific problems, but
rather to teach you how to think regular expressions so that you will be able to
conquer whatever problem you may face.

The Regular-Expression Frame of Mind
As we’ll soon see, complete regular expressions are built up from small building-
block units. Each individual building block is quite simple, but since they can be
combined in an infinite number of ways, knowing how to combine them to
achieve a particular goal takes some experience. So, this chapter provides a quick
overview of some regular-expr ession concepts. It doesn’t go into much depth, but
pr ovides a basis for the rest of this book to build on, and sets the stage for impor-
tant side issues that are best discussed before we delve too deeply into the regular
expr essions themselves.

While some examples may seem silly (because some ar e silly), they repr esent the
kind of tasks that you will want to do — you just might not realize it yet. If each
point doesn’t seem to make sense, don’t worry too much. Just let the gist of the
lessons sink in. That’s the goal of this chapter.

If You Have Some Regular-Expression Experience
If you’re alr eady familiar with regular expressions, much of this overview will not
be new, but please be sure to at least glance over it anyway. Although you may be
awar e of the basic meaning of certain metacharacters, perhaps some of the ways
of thinking about and looking at regular expressions will be new.

Just as there is a dif ference between playing a musical piece well and making
music, ther e is a differ ence between knowing about regular expressions and really
understanding them. Some of the lessons present the same information that you
ar e alr eady familiar with, but in ways that may be new and which are the first
steps to really understanding.

Sear ching Te xt Files: Egre p
Finding text is one of the simplest uses of regular expressions — many text editors
and word processors allow you to search a document using a regular-expr ession
patter n. Even simpler is the utility egr ep. Give egr ep a regular expression and some
files to search, and it attempts to match the regular expression to each line of each
file, displaying only those lines in which a match is found. egr ep is freely available

27 April 2003 17:11

for many systems, including DOS, MacOS, Windows, Unix, and so on. See this
book’s web site, http://regex.info, for links on how to obtain a copy of egr ep
for your system.

Retur ning to the email example from page 3, the command I actually used to gen-
erate a makeshift table of contents from the email file is shown in Figure 1-1. egr ep
interpr ets the first command-line argument as a regular expression, and any
remaining arguments as the file(s) to search. Note, however, that the single quotes
shown in Figure 1-1 are not part of the regular expression, but are needed by my
command shell.† When using egr ep, I usually wrap the regular expression with sin-
gle quotes. Exactly which characters are special, in what contexts, to whom (to the
regular-expr ession, or to the tool), and in what order they are interpr eted ar e all
issues that grow in importance when you move to regular-expr ession use in full-
fledged programming languages—something we’ll see starting in the next chapter.

quotes for the shellcommand
shell’s
prompt

first command-line argument

% egrep ’^(From|Subject): ’ mailbox-file

regular expression passed to egrep

Figur e 1-1: Invoking egr ep fr om the command line

We’ll start to analyze just what the various parts of the regex mean in a moment,
but you can probably already guess just by looking that some of the characters
have special meanings. In this case, the parentheses, the !ˆ ", and the !;" characters
ar e regular-expr ession metacharacters, and combine with the other characters to
generate the result I want.

On the other hand, if your regular expression doesn’t use any of the dozen or so
metacharacters that egr ep understands, it effectively becomes a simple “plain text”
search. For example, searching for !cat " in a file finds and displays all lines with
the three letters c ⋅ a ⋅ t in a row. This includes, for example, any line containing
vacation.

† The command shell is the part of the system that accepts your typed commands and actually exe-
cutes the programs you request. With the shell I use, the single quotes serve to group the command
argument, telling the shell not to pay too much attention to what’s inside. If I didn’t use them, the
shell might think, for example, a ‘+’ that I intended to be part of the regular expression was really
part of a filename pattern that it should interpret. I don’t want that to happen, so I use the quotes to
“hide” the metacharacters from the shell. Windows users of COMMAND.COM or CMD.EXE should prob-
ably use double quotes instead.

The Regular-Expression Frame of Mind 7

27 April 2003 17:11

8 Chapter 1: Introduction to Regular Expressions

Even though the line might not have the wor d cat, the c ⋅ a ⋅ t sequence in
vacation is still enough to be matched. Since it’s there, egr ep goes ahead and dis-
plays the whole line. The key point is that regular-expr ession searching is not
done on a “word” basis — egr ep can understand the concept of bytes and lines in a
file, but it generally has no idea of English’s (or any other language’s) words, sen-
tences, paragraphs, or other high-level concepts.

Eg rep Metacharacter s
Let’s start to explore some of the egr ep metacharacters that supply its regular-
expr ession power. I’ll go over them quickly with a few examples, leaving the
detailed examples and descriptions for later chapters.

Typographical Conventions Befor e we begin, please make sure to review the
typographical conventions explained in the preface, on page xix. This book forges
a bit of new ground in the area of typesetting, so some of my notations may be
unfamiliar at first.

Star t and End of the Line
Pr obably the easiest metacharacters to understand are !ˆ " (car et) and !$ " (dollar),
which repr esent the start and end, respectively, of the line of text as it is being
checked. As we’ve seen, the regular expression !cat " finds c ⋅ a ⋅ t anywher e on the
line, but !ˆcat " matches only if the c ⋅ a ⋅ t is at the beginning of the line — the !ˆ " is
used to effectively anchor the match (of the rest of the regular expression) to the
start of the line. Similarly, !cat$ " finds c ⋅ a ⋅ t only at the end of the line, such as a
line ending with scat.

It’s best to get into the habit of interpreting regular expressions in a rather literal
way. For example, don’t think

!ˆcat " matches a line with cat at the beginning
but rather:

!ˆcat " matches if you have the beginning of a line, followed immediately
by c, followed immediately by a, followed immediately by t.

They both end up meaning the same thing, but reading it the more literal way
allows you to intrinsically understand a new expression when you see it. How
would egr ep interpr et !ˆcat$ ", !ˆ$ ", or even simply !ˆ " alone? v Turn the page to
check your interpretations.

The caret and dollar are special in that they match a position in the line rather than
any actual text characters themselves. Of course, there are various ways to actually
match real text. Besides providing literal characters like !cat " in your regular
expr ession, you can also use some of the items discussed in the next few sections.

27 April 2003 17:11

Character Classes
Matching any one of several character s

Let’s say you want to search for “grey,” but also want to find it if it were spelled
“gray.” The regular-expr ession construct ![˙˙˙]", usually called a character class, lets
you list the characters you want to allow at that point in the match. While !e "

matches just an e, and !a " matches just an a, the regular expression ![ea] " matches
either. So, then, consider !gr[ea]y ": this means to find “ g, followed by r, followed
by either an e or an a, all followed by y .” Because I’m a really poor speller, I’m
always using regular expressions like this against a huge list of English words to
figur e out proper spellings. One I use often is !sep[ea]r[ea]te ", because I can
never remember whether the word is spelled “seperate,” “separate,” “separ ete,” or
what. The one that pops up in the list is the proper spelling; regular expressions
to the rescue.

Notice how outside of a class, literal characters (like the !g " and !r " of !gr[ae]y ")
have an implied “and then” between them — “match !g " and then match !r " . . .” It’s
completely opposite inside a character class. The contents of a class is a list of
characters that can match at that point, so the implication is “or.”

As another example, maybe you want to allow capitalization of a word’s first letter,
such as with ![Ss]mith ". Remember that this still matches lines that contain smith

(or Smith) embedded within another word, such as with blacksmith. I don’t
want to harp on this throughout the overview, but this issue does seem to be the
source of problems among some new users. I’ll touch on some ways to handle this
embedded-word problem after we examine a few more metacharacters.

You can list in the class as many characters as you like. For example, ![123456] "

matches any of the listed digits. This particular class might be useful as part of
!<H[123456]> ", which matches <H1>, <H2>, <H3>, etc. This can be useful when
searching for HTML headers.

Within a character class, the character-class metacharacter ‘-’ (dash) indicates a
range of characters: !<H[1-6]> " is identical to the previous example. ![0-9] " and
![a-z] " ar e common shorthands for classes to match digits and English lowercase
letters, respectively. Multiple ranges are fine, so ![0123456789abcdefABCDEF] " can
be written as ![0-9a-fA-F] " (or, perhaps, ![A-Fa-f0-9] ", since the order in which
ranges are given doesn’t matter). These last three examples can be useful when
pr ocessing hexadecimal numbers. You can freely combine ranges with literal char-
acters: ![0-9A-ZR!.?] " matches a digit, uppercase letter, underscor e, exclamation
point, period, or a question mark.

Note that a dash is a metacharacter only within a character class — otherwise it
matches the normal dash character. In fact, it is not even always a metacharacter
within a character class. If it is the first character listed in the class, it can’t possibly

Eg rep Metacharacter s 9

27 April 2003 17:11

10 Chapter 1: Introduction to Regular Expressions

Reading !ˆcat$ " , !ˆ$ " , and !ˆ "
v Answers to the questions on page 8.

!ˆcat$ " Literally means: matches if the line has a beginning-of-line (which, of
course, all lines have), followed immediately by c ⋅ a ⋅ t, and then fol-
lowed immediately by the end of the line.

Ef fectively means: a line that consists of only cat — no extra words,
spaces, punctuation... just ‘cat’.

!ˆ$ " Literally means: matches if the line has a beginning-of-line, followed
immediately by the end of the line.

Ef fectively means: an empty line (with nothing in it, not even
spaces).

!ˆ " Literally means: matches if the line has a beginning-of-line.

Ef fectively meaningless ! Since every line has a beginning, every line
will match—even lines that are empty!

indicate a range, so it is not considered a metacharacter. Along the same lines, the
question mark and period at the end of the class are usually regular-expr ession
metacharacters, but only when not within a class (so, to be clear, the only special
characters within the class in ![0-9A-ZR!.?] " ar e the two dashes).

Consider character classes as their own mini language. The rules regard-
ing which metacharacters are supported (and what they do) are com-
pletely differ ent inside and outside of character classes.

We’ll see more examples of this shortly.

Negated character classes

If you use ![ˆ˙˙˙]" instead of ![˙˙˙]", the class matches any character that isn’t listed.
For example, ![ˆ1-6] " matches a character that’s not 1 thr ough 6. The leading ˆ in
the class “negates” the list, so rather than listing the characters you want to include
in the class, you list the characters you don’t want to be included.

You might have noticed that the ˆ used here is the same as the start-of-line caret
intr oduced on page 8. The character is the same, but the meaning is completely
dif ferent. Just as the English word “wind” can mean differ ent things depending on
the context (sometimes a strong breeze, sometimes what you do to a clock), so
can a metacharacter. We’ve already seen one example, the range-building dash. It
is valid only inside a character class (and at that, only when not first inside the
class). ˆ is a line anchor outside a class, but a class metacharacter inside a class
(but, only when it is immediately after the class’s opening bracket; otherwise, it’s

27 April 2003 17:11

not special inside a class). Don’t fear — these are the most complex special cases;
others we’ll see later aren’t so bad.

As another example, let’s search that list of English words for odd words that have
q followed by something other than u. Translating that into a regular expression, it
becomes !q[ˆu] ". I tried it on the list I have, and there certainly weren’t many. I did
find a few, including a number of words that I didn’t even know were English.

Her e’s what happened. (What I typed is in bold.)

% egrep ’q[ˆu]’ word.list
Iraqi
Iraqian
miqra
qasida
qintar
qoph
zaqqum%

Two notable words not listed are “Qantas”, the Australian airline, and “Iraq”.
Although both words are in the wor d.list file, neither were displayed by my egr ep
command. Why? v Think about it for a bit, and then turn the page to check your
reasoning.

Remember, a negated character class means “match a character that’s not listed”
and not “don’t match what is listed.” These might seem the same, but the Iraq

example shows the subtle differ ence. A convenient way to view a negated class is
that it is simply a shorthand for a normal class that includes all possible characters
except those that are listed.

Matching Any Character with Dot
The metacharacter ! ." (usually called dot or point) is a shorthand for a character
class that matches any character. It can be convenient when you want to have an
“any character here” placeholder in your expression. For example, if you want to
search for a date such as 03/19/76, 03-19-76, or even 03.19.76, you could go
to the trouble to construct a regular expression that uses character classes to
explicitly allow ‘/’, ‘-’, or ‘.’ between each number, such as !03[-./]19[-./]76 ".
However, you might also try simply using !03.19.76 ".

Quite a few things are going on with this example that might be unclear at first. In
!03[-./]19[-./]76 ", the dots are not metacharacters because they are within a
character class. (Remember, the list of metacharacters and their meanings are dif-
fer ent inside and outside of character classes.) The dashes are also not class meta-
characters in this case because each is the first thing after [or [ˆ. Had they not
been first, as with ![.-/] ", they would be the class range metacharacter, which
would be a mistake in this situation.

Eg rep Metacharacter s 11

27 April 2003 17:11

12 Chapter 1: Introduction to Regular Expressions

Quiz Answer
v Answer to the question on page 11.

Why doesn’t !q[ˆu] " match ‘Qantas’ or ‘Iraq’?

Qantas didn’t match because the regular expression called for a lowercase q,
wher eas the Q in Qantas is uppercase. Had we used !Q[ˆu] " instead, we
would have found it, but not the others, since they don’t have an uppercase
Q. The expression ![Qq][ˆu] " would have found them all.

The Iraq example is somewhat of a trick question. The regular expression
calls for q followed by a character that’s not u, which precludes matching q
at the end of the line. Lines generally have newline characters at the very
end, but a little fact I neglected to mention (sorry!) is that egr ep strips those
befor e checking with the regular expression, so after a line-ending q, ther e’s
no non-u to be matched.

Don’t feel too bad because of the trick question.† Let me assure you that had
egr ep not automatically stripped the newlines (many other tools don’t strip
them), or had Iraq been followed by spaces or other words or whatnot, the
line would have matched. It is important to eventually understand the little
details of each tool, but at this point what I’d like you to come away with
fr om this exercise is that a character class, even negated, still requir es a char-
acter to match.

With !03.19.76 ", the dots ar e metacharacters — ones that match any character
(including the dash, period, and slash that we are expecting). However, it is
important to know that each dot can match any character at all, so it can match,
say, ‘lottery numbers: 19 203319 7639’.

So, !03[-./]19[-./]76 " is more precise, but it’s more dif ficult to read and write.
!03.19.76 " is easy to understand, but vague. Which should we use? It all depends
upon what you know about the data being searched, and just how specific you
feel you need to be. One important, recurring issue has to do with balancing your
knowledge of the text being searched against the need to always be exact when
writing an expression. For example, if you know that with your data it would be
highly unlikely for !03.19.76 " to match in an unwanted place, it would certainly
be reasonable to use it. Knowing the target text well is an important part of wield-
ing regular expressions effectively.

† Once, in fourth grade, I was leading the spelling bee when I was asked to spell “miss.” My answer
was “m ⋅ i ⋅ s ⋅ s.” Miss Smith relished in telling me that no, it was “M ⋅ i ⋅ s ⋅ s” with a capital M, that I
should have asked for an example sentence, and that I was out. It was a traumatic moment in a
young boy’s life. After that, I never liked Miss Smith, and have since been a very poor speler.

27 April 2003 17:11

Alter nation
Matching any one of several subexpressions

A very convenient metacharacter is ! ; ", which means “or.” It allows you to combine
multiple expressions into a single expression that matches any of the individual
ones. For example, !Bob " and !Robert " ar e separate expressions, but !Bob;Robert " is
one expression that matches either. When combined this way, the subexpressions
ar e called alter natives.

Looking back to our !gr[ea]y " example, it is interesting to realize that it can be
written as !grey;gray ", and even !gr(a;e)y ". The latter case uses parentheses to
constrain the alternation. (For the record, parentheses are metacharacters too.)
Note that something like !gr[a;e]y " is not what we want — within a class, the ‘;’
character is just a normal character, like !a " and !e ".

With !gr(a;e)y ", the parentheses are requir ed because without them, !gra;ey "

means “ !gra " or !ey " ,” which is not what we want here. Alternation reaches far, but
not beyond parentheses. Another example is !(First;1st) [Ss]treet ".† Actually,
since both !First " and !1st " end with !st ", the combination can be shortened to
!(Fir;1)st [Ss]treet ". That’s not necessarily quite as easy to read, but be sure to
understand that !(first;1st) " and !(fir;1)st " ef fectively mean the same thing.

Her e’s an example involving an alternate spelling of my name. Compare and con-
trast the following three expressions, which are all effectively the same:

!Jeffrey;Jeffery "

!Jeff(rey;ery) "

!Jeff(re;er)y "

To have them match the British spellings as well, they could be:

!(Geoff;Jeff)(rey;ery) "

!(Geo;Je)ff(rey;ery) "

!(Geo;Je)ff(re;er)y "

Finally, note that these three match effectively the same as the longer (but simpler)
!Jeffrey;Geoffery;Jeffery;Geoffrey ". They’r e all differ ent ways to specify the
same desired matches.

Although the !gr[ea]y " versus !gr(a;e)y " examples might blur the distinction, be
car eful not to confuse the concept of alternation with that of a character class. A
character class can match just a single character in the target text. With alternation,
since each alternative can be a full-fledged regular expression in and of itself, each

† Recall from the typographical conventions on page xx that “ ” is how I sometimes show a space
character so it can be seen easily.

Eg rep Metacharacter s 13

27 April 2003 17:11

14 Chapter 1: Introduction to Regular Expressions

alter native can match an arbitrary amount of text. Character classes are almost like
their own special mini-language (with their own ideas about metacharacters, for
example), while alternation is part of the “main” regular expression language.
You’ll find both to be extremely useful.

Also, take care when using caret or dollar in an expression that has alternation.
Compar e !ˆFrom<Subject<Date: " with !ˆ(From<Subject<Date): ". Both appear
similar to our earlier email example, but what each matches (and therefor e how
useful it is) differs greatly. The first is composed of three alternatives, so it matches
“ !ˆFrom " or !Subject " or !Date: ",” which is not particularly useful. We want the
leading caret and trailing !: " to apply to each alternative. We can accomplish this
by using parentheses to “constrain” the alternation:

!ˆ(From;Subject;Date): "

The alternation is constrained by the parentheses, so literally, this regex means
“match the start of the line, then one of !From ", !Subject ", or !Date ", and then match
!: ".” Effectively, it matches:

1) start-of-line, followed by F ⋅ r ⋅ o ⋅ m, followed by ‘: ’
or 2) start-of-line, followed by S ⋅ u ⋅ b ⋅ j ⋅ e ⋅ c ⋅ t, followed by ‘: ’
or 3) start-of-line, followed by D ⋅ a ⋅ t ⋅ e, followed by ‘: ’

Putting it less literally, it matches lines beginning with ‘From: ’, ‘Subject: ’, or
‘Date: ’, which is quite useful for listing the messages in an email file.

Her e’s an example:

% egrep ’ˆ(From<Subject<Date): ’ mailbox
From: elvis@tabloid.org (The King)
Subject: be seein’ ya around
Date: Thu, 22 Aug 2002 11:04:13
From: The Prez <president@whitehouse.gov>
Date: Tue, 27 Aug 2002 8:36:24
Subject: now, about your vote˙˙˙

+
+
+

Ignor ing Differences in Capitalization
This email header example provides a good opportunity to introduce the concept
of a case-insensitive match. The field types in an email header usually appear with
leading capitalization, such as “Subject” and “From,” but the email standard actually
allows mixed capitalization, so things like “DATE” and “from” are also allowed.
Unfortunately, the regular expression in the previous section doesn’t match those.

One approach is to replace !From " with ![Ff][Rr][Oo][Mm] " to match any form of
“fr om,” but this is quite cumbersome, to say the least. Fortunately, there is a way to
tell egr ep to ignore case when doing comparisons, i.e., to perfor m the match in a
case insensitive manner in which capitalization differ ences ar e simply ignored. It is

27 April 2003 17:11

not a part of the regular-expr ession language, but is a related useful feature many
tools provide. egr ep’s command-line option “-i” tells it to do a case-insensitive
match. Place -i on the command line before the regular expression:

% egrep -i ’ˆ(From;Subject;Date): ’ mailbox

This brings up all the lines we matched before, but also includes lines such as:

SUBJECT: MAKE MONEY FAST

I find myself using the -i option quite frequently (perhaps related to the footnote
on page 12!) so I recommend keeping it in mind. We’ll see other convenient sup-
port features like this in later chapters.

Word Boundar ies
A common problem is that a regular expression that matches the word you want
can often also match where the “word” is embedded within a larger word. I men-
tioned this briefly in the cat, gray, and Smith examples. It turns out, though, that
some versions of egr ep of fer limited support for word recognition: namely the abil-
ity to match the boundary of a word (where a word begins or ends).

You can use the (perhaps odd looking) metasequences !\<" and !\>" if your version
happens to support them (not all versions of egr ep do). You can think of them as
word-based versions of !ˆ " and !$ " that match the position at the start and end of a
word, respectively. Like the line anchors caret and dollar, they anchor other parts
of the regular expression but don’t actually consume any characters during a
match. The expression !\<cat\> " literally means “ match if we can find a start-of-
word position, followed immediately by c ⋅ a ⋅ t, followed immediately by an end-
of-word position .” Mor e naturally, it means “find the word cat.” If you wanted,
you could use !\<cat " or !cat\> " to find words starting and ending with cat.

Note that !<" and !>" alone are not metacharacters — when combined with a back-
slash, the sequences become special. This is why I called them “metasequences.”
It’s their special interpretation that’s important, not the number of characters, so
for the most part I use these two meta-words interchangeably.

Remember, not all versions of egr ep support these word-boundary metacharacters,
and those that do don’t magically understand the English language. The “start of a
word” is simply the position where a sequence of alphanumeric characters begins;
“end of word” is where such a sequence ends. Figure 1-2 on the next page shows
a sample line with these positions marked.

The word-starts (as egr ep recognizes them) are marked with up arrows, the word-
ends with down arrows. As you can see, “start and end of word” is better phrased
as “start and end of an alphanumeric sequence,” but perhaps that’s too much of a
mouthful.

Eg rep Metacharacter s 15

27 April 2003 17:11

16 Chapter 1: Introduction to Regular Expressions

- positions where \> is true- positions where \< is true

That dang- tootin’ #@!%* varmint’s cost me $199.95!

Figur e 1-2: Start and end of “word” positions

In a Nutshell
Table 1-1 summarizes the metacharacters we have seen so far.

Table 1-1: Summary of Metacharacters Seen So Far

Metacharacter Name Matches

. dot any one character
[˙˙˙] character class any character listed
[ˆ˙˙˙] negated character class any character not listed

ˆ car et the position at the start of the line
$ dollar the position at the end of the line
\< backslash less-than †the position at the start of a word
\> backslash greater-than †the position at the end of a word

†not supported by all versions of egrep

; or; bar matches either expression it separates
(˙˙˙) par entheses used to limit scope of !;", plus additional uses

yet to be discussed

In addition to the table, important points to remember include:

• The rules about which characters are and aren’t metacharacters (and exactly
what they mean) are dif ferent inside a character class. For example, dot is a
metacharacter outside of a class, but not within one. Conversely, a dash is a
metacharacter within a class (usually), but not outside. Moreover, a car et has
one meaning outside, another if specified inside a class immediately after the
opening [, and a third if given elsewhere in the class.

• Don’t confuse alternation with a character class. The class ![abc] " and the alter-
nation !(a;b;c) " ef fectively mean the same thing, but the similarity in this
example does not extend to the general case. A character class can match
exactly one character, and that’s true no matter how long or short the speci-
fied list of acceptable characters might be.

27 April 2003 17:11

Alter nation, on the other hand, can have arbitrarily long alternatives, each tex-
tually unrelated to the other: !\<(1,000,000;million;thousand thou)\>".
However, alter nation can’t be negated like a character class.

• A negated character class is simply a notational convenience for a normal
character class that matches everything not listed. Thus, ![ˆx] " doesn’t mean
“ match unless there is an x ,” but rather “ match if there is something that is
not x .” The differ ence is subtle, but important. The first concept matches a
blank line, for example, while ![ˆx] " does not.

• The useful -i option discounts capitalization during a match (+ 15).†

What we have seen so far can be quite useful, but the real power comes from
optional and counting elements, which we’ll look at next.

Optional Items
Let’s look at matching color or colour. Since they are the same except that one
has a u and the other doesn’t, we can use !colou?r " to match either. The metachar-
acter !? " (question mark) means optional. It is placed after the character that is
allowed to appear at that point in the expression, but whose existence isn’t actu-
ally requir ed to still be considered a successful match.

Unlike other metacharacters we have seen so far, the question mark attaches only
to the immediately-preceding item. Thus, !colou?r " is interpreted as “ !c " then !o "

then !l " then !o " then !u? " then !r ". ”

The !u? " part is always successful: sometimes it matches a u in the text, while other
times it doesn’t. The whole point of the ?-optional part is that it’s successful either
way. This isn’t to say that any regular expression that contains ? is always success-
ful. For example, against ‘semicolon’, both !colo " and !u? " ar e successful (matching
colo and nothing, respectively). However, the final !r " fails, and that’s what dis-
allows semicolon, in the end, from being matched by !colou?r ".

As another example, consider matching a date that repr esents July fourth, with the
“July” part being either July or Jul, and the “fourth” part being fourth, 4th, or
simply 4. Of course, we could just use !(July;Jul) (fourth;4th;4)", but let’s
explor e other ways to express the same thing.

First, we can shorten the !(July;Jul) " to !(July?)". Do you see how they are effec-
tively the same? The removal of the !;" means that the parentheses are no longer
really needed. Leaving the parentheses doesn’t hurt, but with them removed,
!July? " is a bit less cluttered. This leaves us with !July? (fourth;4th;4)".

† Recall from the typographical conventions (page xx) that something like “+ 15” is a shorthand for a
refer ence to another page of this book.

Eg rep Metacharacter s 17

27 April 2003 17:11

18 Chapter 1: Introduction to Regular Expressions

Moving now to the second half, we can simplify the !4th;4 " to !4(th)? ". As you
can see, !? " can attach to a parenthesized expression. Inside the parentheses can be
as complex a subexpression as you like, but “from the outside” it is considered a
single unit. Grouping for !? " (and other similar metacharacters which I’ll introduce
momentarily) is one of the main uses of parentheses.

Our expression now looks like !July? (fourth<4(th)?)". Although there are a
fair number of metacharacters, and even nested parentheses, it is not that difficult
to decipher and understand. This discussion of two essentially simple examples
has been rather long, but in the meantime we have covered tangential topics that
add a lot, if perhaps only subconsciously, to our understanding of regular expres-
sions. Also, it’s given us some experience in taking differ ent appr oaches toward
the same goal. As we advance through this book (and through to a better under-
standing), you’ll find many opportunities for creative juices to flow while trying to
find the optimal way to solve a complex problem. Far from being some stuffy sci-
ence, writing regular expressions is closer to an art.

Other Quantifier s: Repetition
Similar to the question mark are !+ " (plus) and ! + " (an asterisk, but as a regular-
expr ession metacharacter, I prefer the term star). The metacharacter !+ " means “one
or more of the immediately-preceding item,” and ! + " means “any number, including
none, of the item.” Phrased differ ently, ! ˙˙˙+ " means “try to match it as many times
as possible, but it’s okay to settle for nothing if need be.” The construct with plus,
! ˙˙˙+ ", is similar in that it also tries to match as many times as possible, but differ ent
in that it fails if it can’t match at least once. These three metacharacters, question
mark, plus, and star, are called quantifiers because they influence the quantity of
what they govern.

Like ! ˙˙˙? ", the ! ˙˙˙+ " part of a regular expression always succeeds, with the only issue
being what text (if any) is matched. Contrast this to ! ˙˙˙+ ", which fails unless the
item matches at least once.

For example, ! ? " allows a single optional space, but ! + " allows any number of
optional spaces. We can use this to make page 9’s <H[1-6]> example flexible. The
HTML specification† says that spaces are allowed immediately before the closing >,
such as with <H3 > and <H4 >. Inserting ! + " into our regular expression where
we want to allow (but not requir e) spaces, we get !<H[1-6] +>". This still matches
<H1>, as no spaces are requir ed, but it also flexibly picks up the other versions.

† If you are not familiar with HTML, never fear. I use these as real-world examples, but I provide all the
details needed to understand the points being made. Those familiar with parsing HTML tags will
likely recognize important considerations I don’t address at this point in the book.

27 April 2003 17:11

Exploring further, let’s search for an HTML tag such as <HR SIZE=14>, which indi-
cates that a line (a Horizontal Rule) 14 pixels thick should be drawn across the
scr een. Like the <H3> example, optional spaces are allowed before the closing
angle bracket. Additionally, they are allowed on either side of the equal sign.
Finally, one space is requir ed between the HR and SIZE, although more are
allowed. To allow more, we could just add ! + " to the ! " alr eady ther e, but instead
let’s change it to ! + ". The plus allows extra spaces while still requiring at least one,
so it’s effectively the same as ! + ", but more concise. All these changes leave us
with !<HR + SIZE , = , 14 ,>".

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only one particular
size such as 14, we want to find them all. To accomplish this, we replace the !14 "

with an expression to find a general number. Well, in this case, a “number” is one
or more digits. A digit is ![0-9] ", and “one or more” adds a plus, so we end up
replacing !14 " by ![0-9]+ ". (A character class is one “unit,” so can be subject directly
to plus, question mark, and so on, without the need for parentheses.)

This leaves us with !<HR + SIZE , = , [0-9]+ ,>", which is certainly a mouthful
even though I’ve presented it with the metacharacters bold, added a bit of spacing
to make the groupings more appar ent, and am using the “visible space” symbol ‘ ’
for clarity. (Luckily, egr ep has the -i case-insensitive option, + 15, which means I
don’t have to use ![Hh][Rr] " instead of !HR ".) The unadorned regular expression
!<HR +SIZE += +[0-9]+ +>" likely appears even more confusing. This example
looks particularly odd because the subjects of most of the stars and pluses are
space characters, and our eye has always been trained to treat spaces specially.
That’s a habit you will have to break when reading regular expressions, because
the space character is a normal character, no dif ferent from, say, j or 4. (In later
chapters, we’ll see that some other tools support a special mode in which white-
space is ignored, but egr ep has no such mode.)

Continuing to exploit a good example, let’s consider that the size attribute is
optional, so you can simply use <HR> if the default size is wanted. (Extra spaces
ar e allowed before the >, as always.) How can we modify our regular expression
so that it matches either type? The key is realizing that the size part is optional
(that’s a hint). v Turn the page to check your answer.

Take a good look at our latest expression (in the answer box) to appreciate the
dif ferences among the question mark, star, and plus, and what they really mean in
practice. Table 1-2 on the next page summarizes their meanings.

Note that each quantifier has some minimum number of matches requir ed to suc-
ceed, and a maximum number of matches that it will ever attempt. With some, the
minimum number is zero; with some, the maximum number is unlimited.

Eg rep Metacharacter s 19

27 April 2003 17:11

20 Chapter 1: Introduction to Regular Expressions

Making a Subexpression Optional
v Answer to the question on page 19.

In this case, “optional” means that it is allowed once, but is not requir ed.
That means using !? ". Since the thing that’s optional is larger than one charac-
ter, we must use parentheses: !(˙˙˙)? ". Inserting into our expression, we get:

!<HR(+SIZE += +[0-9]+)? +>"

Note that the ending ! + " is kept outside of the !(˙˙˙)? ". This still allows some-
thing such as <HR >. Had we included it within the parentheses, ending
spaces would have been allowed only when the size component was
pr esent.

Similarly, notice that the ! + " befor e SIZE is included within the parentheses.
Were it left outside them, a space would have been requir ed after the HR,
even when the SIZE part wasn’t there. This would cause ‘<HR>’ to not match.

Table 1-2: Summary of Quantifier “Repetition Metacharacters”

Minimum Maximum
Required to Tr y Meaning

? none 1 one allowed; none requir ed (“one optional ”)
+ none no limit unlimited allowed; none requir ed (“any amount okay ”)
+ 1 no limit unlimited allowed; one requir ed (“at least one ”)

Defined range of matches: intervals

Some versions of egr ep support a metasequence for providing your own minimum
and maximum: ! ˙˙˙{min,max}". This is called the interval quantifier. For example,
! ˙˙˙{3,12} " matches up to 12 times if possible, but settles for three. One might use
![a-zA-Z]{1,5} " to match a US stock ticker (from one to five letters). Using this
notation, {0,1} is the same as a question mark.

Not many versions of egr ep support this notation yet, but many other tools do, so
it’s covered in Chapter 3 when we look in detail at the broad spectrum of meta-
characters in common use today.

Parentheses and Backreferences
So far, we have seen two uses for parentheses: to limit the scope of alternation, !;",
and to group multiple characters into larger units to which you can apply quanti-
fiers like question mark and star. I’d like to discuss another specialized use that’s
not common in egr ep (although GNU’s popular version does support it), but which
is commonly found in many other tools.

27 April 2003 17:11

In many regular-expr ession flavors, parentheses can “remember” text matched by
the subexpression they enclose. We’ll use this in a partial solution to the doubled-
word problem at the beginning of this chapter. If you knew the the specific dou-
bled word to find (such as “the” earlier in this sentence — did you catch it?), you
could search for it explicitly, such as with !the the ". In this case, you would also
find items such as the theory, but you could easily get around that problem if
your egr ep supports the word-boundary metasequences !\<˙˙˙\>" mentioned on
page 15: !\<the the\> ". We could use ! + " for the space for even more flexibility.

However, having to check for every possible pair of words would be an impossi-
ble task. Wouldn’t it be nice if we could match one generic word, and then say
“now match the same thing again”? If your egr ep supports backr efer encing, you
can. Backrefer encing is a regular-expr ession featur e that allows you to match new
text that is the same as some text matched earlier in the expression.

We start with !\<the +the\> " and replace the initial !the " with a regular expression
to match a general word, say ![A-Za-z]+ ". Then, for reasons that will become clear
in the next paragraph, let’s put parentheses around it. Finally, we replace the sec-
ond ‘the’ by the special metasequence !\1 ". This yields !\<([A-Za-z]+) +\1\>".

With tools that support backrefer encing, par entheses “r emember” the text that the
subexpr ession inside them matches, and the special metasequence !\1 " repr esents
that text later in the regular expression, whatever it happens to be at the time.

Of course, you can have more than one set of parentheses in a regular expression.
Use !\1 ", !\2 ", !\3 ", etc., to refer to the first, second, third, etc. sets. Pairs of parenthe-
ses are number ed by counting opening parentheses from the left, so with
!([a-z])([0-9])\1\2 ", the !\1 " refers to the text matched by ![a-z] ", and !\2 " refers
to the text matched by ![0-9] ".

With our ‘the the’ example, ![A-Za-z]+ " matches the first ‘the’. It is within the
first set of parentheses, so the ‘the’ matched becomes available via !\1 ". If the fol-
lowing ! + " matches, the subsequent !\1 " will requir e another ‘the’. If !\1 " is success-
ful, then !\> " makes sure that we are now at an end-of-word boundary (which we
wouldn’t be were the text ‘the theft’). If successful, we’ve found a repeated
word. It’s not always the case that that is an error (such as with “that” in this sen-
tence), but that’s for you to decide once the suspect lines are shown.

When I decided to include this example, I actually tried it on what I had written so
far. (I used a version of egr ep that supports both !\<˙˙˙\>" and backrefer encing.) To
make it more useful, so that ‘The the’ would also be found, I used the case-insen-
sitive -i option mentioned on page 15.†

† Be awar e that some versions of egr ep, including the popular GNU version, have a bug with the -i
option such that it doesn’t apply to backrefer ences. Thus, it finds “the the” but not “The the.”

Eg rep Metacharacter s 21

27 April 2003 17:11

22 Chapter 1: Introduction to Regular Expressions

Her e’s the command I ran:

% egrep -i ’\<([a-z]+) +\1\>’ files˙˙˙

I was surprised to find fourteen sets of mistakenly ‘doubled doubled’ words! I
corr ected them, and since then have built this type of regular-expr ession check
into the tools that I use to produce the final output of this book, to ensure none
cr eep back in.

As useful as this regular expression is, it is important to understand its limitations.
Since egr ep considers each line in isolation, it isn’t able to find when the ending
word of one line is repeated at the beginning of the next. For this, a more flexible
tool is needed, and we will see some examples in the next chapter.

The Great Escape
One important thing I haven’t mentioned yet is how to actually match a character
that a regular expression would normally interpret as a metacharacter. For exam-
ple, if I searched for the Internet hostname ega.att.com using !ega.att.com ", it
could end up matching something like megawatt computing. Remember, ! ." is a
metacharacter that matches any character, including a space.

The metasequence to match an actual period is a period preceded by a backslash:
!ega\.att\.com ". The sequence !\." is described as an escaped period or escaped
dot, and you can do this with all the normal metacharacters, except in a character-
class.†

A backslash used in this way is called an “escape” — when a metacharacter is
escaped, it loses its special meaning and becomes a literal character. If you like,
you can consider the sequence to be a special metasequence to match the literal
character. It’s all the same.

As another example, you could use !\([a-zA-Z]+\)" to match a word within
par entheses, such as ‘(very)’. The backslashes in the !\(" and !\)" sequences
remove the special interpretation of the parentheses, leaving them as literals to
match parentheses in the text.

When used before a non-metacharacter, a backslash can have differ ent meanings
depending upon the version of the program. For example, we have already seen
how some versions treat !\< ", !\>", !\1 ", etc. as metasequences. We will see many
mor e examples in later chapters.

† Most programming languages and tools allow you to escape characters within a character class as
well, but most versions of egr ep do not, instead treating ‘\’ within a class as a literal backslash to be
included in the list of characters.

27 April 2003 17:11

Expanding the Foundation
I hope the examples and explanations so far have helped to establish the basis for
a solid understanding of regular expressions, but please realize that what I’ve pro-
vided so far lacks depth. There’s so much more out there.

Linguistic Diver sification
I mentioned a number of regular expression features that most versions of egr ep
support. There are other features, some of which are not supported by all ver-
sions, which I’ll leave for later chapters.

Unfortunately, the regular expression language is no differ ent fr om any other in
that it has various dialects and accents. It seems each new program employing reg-
ular expressions devises its own “improvements.” The state of the art continually
moves forward, but changes over the years have resulted in a wide variety of reg-
ular expression “flavors.” We’ll see many examples in the following chapters.

The Goal of a Regular Expression
Fr om the broadest top-down view, a regular expression either matches within a
lump of text (with egr ep, each line) or it doesn’t. When crafting a regular expres-
sion, you must consider the ongoing tug-of-war between having your expression
match the lines you want, yet still not matching lines you don’t want.

Also, while egr ep doesn’t care wher e in the line the match occurs, this concern is
important for many other regular-expr ession uses. If your text is something such as

...zip is 44272. If you write, send $4.95 to cover postage and...

and you merely want to find lines matching ![0-9]+ ", you don’t care which num-
bers are matched. However, if your intent is to do something with the number
(such as save to a file, add, replace, and such — we will see examples of this kind
of processing in the next chapter), you’ll care very much exactly which numbers
ar e matched.

A Few More Examples
As with any language, experience is a very good thing, so I’m including a few
mor e examples of regular expressions to match some common constructs.

Half the battle when writing regular expressions is getting successful matches
when and where you want them. The other half is to not match when and where
you don’t want. In practice, both are important, but for the moment, I would like
to concentrate on the “getting successful matches” aspect. Even though I don’t
take these examples to their fullest depths, they still provide useful insight.

Expanding the Foundation 23

27 April 2003 17:11

24 Chapter 1: Introduction to Regular Expressions

Variable names

Many programming languages have identifiers (variable names and such) that are
allowed to contain only alphanumeric characters and underscores, but which may
not begin with a digit. They are matched by ![a-zA-ZR][a-zA-ZR0-9]+ ". The first
character class matches what the first character can be, the second (with its accom-
panying star) allows the rest of the identifier. If ther e is a limit on the length of an
identifier, say 32 characters, you might replace the star with !{0,31} " if the
!{min,max}" notation is supported. (This construct, the interval quantifier, was briefly
mentioned on page 20.)

A str ing within double quotes

A simple solution to matching a string within double quotes might be: !"[ˆ"]+""

The double quotes at either end are to match the opening and closing double
quotes of the string. Between them, we can have anything... except another dou-
ble quote! So, we use ![ˆ"] " to match all characters except a double quote, and
apply using a star to indicate we can have any number of such non double-quote
characters.

A mor e useful (but more complex) definition of a double-quoted string allows
double quotes within the string if they are escaped with a backslash, such as in
"nail the 2\"x4\" plank". We’ll see this example several times in future chap-
ters while covering the many details of how a match is actually carried out.

Dollar amount (with optional cents)

One approach to matching a dollar amount is: !\$[0-9]+(\.[0-9][0-9])? "

Fr om a top-level perspective, this is a simple regular expression with three parts:
!\$ " and ! ˙˙˙+ " and !(˙˙˙)? ", which might be loosely paraphrased as “a literal dollar
sign, a bunch of one thing, and finally perhaps another thing.” In this case, the
“one thing” is a digit (with a bunch of them being a number), and “another thing”
is the combination of a decimal point followed by two digits.

This example is a bit naïve for several reasons. For example, it considers dollar
amounts like $1000, but not $1,000. It does allow for optional cents, but frankly,
that’s not really very useful when applied with egr ep. egr ep never cares exactly
how much is matched, but merely whether ther e is a match. Allowing something
optional at the end never changes whether there’s an overall match to begin with.

But, if you need to find lines that contain just a price, and nothing else, you can
wrap the expression with !ˆ˙˙˙$ ". In this case, the optional cents part becomes
important since it might or might not come between the dollar amount and the

27 April 2003 17:11

end of the line, and allowing or disallowing it makes the differ ence in achieving
an overall match.

One type of value our expression doesn’t match is ‘$.49’. To solve this, you might
be tempted to change the plus to a star, but that doesn’t work. As to why, I’ll leave
it as a teaser until we look at this example again in Chapter 5 (+ 194).

An HTTP/HTML URL

The format of web URLs can be complex, so constructing a regular expression to
match any possible URL can be equally complex. However, relaxing your standards
slightly can allow you to match most common URLs with a fairly simple expres-
sion. One common reason I might do this, for example, would be to search my
email archive for a URL that I vaguely remember having received, but which I
think I might recognize when I see it.

The general form of a common HT TP/HTML URL is along the lines of

http://hostname/path.html

although ending with .htm is common as well.

The rules about what can and can’t be a hostname (computer name, such as
www.yahoo.com) are complex, but for our needs we can realize that if it follows
‘http://’, it’s probably a hostname, so we can make do with something simple,
such as ![-a-z0-9R.]+ ". The path part can be even more varied, so we’ll use
![-a-z0-9R:@&?=+,.!/˜+’%$]+ " for that. Notice that these classes have the dash
first, to ensure that it’s taken as a literal character and included in the list, as
opposed to part of a range (+ 9).

Putting these all together, we might use as our first attempt something like:

% egrep -i ’\<http://[-a-z0-9R.:]+/[-a-z0-9R:@&?=+,.!/˜+’%$]+\.html?\>’ files

Again, since we’ve taken liberties and relaxed what we’ll match, we could well
match something such as ‘http:// /foo.html’, which is certainly not a
valid URL. Do we car e about this? It all depends on what you’re trying to do. For
my scan of my email archive, it doesn’t really matter if I get a few false matches.
Heck, I could probably get away with even something as simple as:

% egrep -i ’\<http://[ˆ]+\.html?\>’ files...

As we’ll learn when getting deeper into how to craft an expression, knowing the
data you’ll be searching is an important aspect of finding the balance between
complexity and completeness. We’ll visit this example again, in more detail, in the
next chapter.

Expanding the Foundation 25

27 April 2003 17:11

26 Chapter 1: Introduction to Regular Expressions

An HTML tag

With a tool like egr ep, it doesn’t seem particularly common or useful to simply
match lines with HTML tags. But, exploring a regular expression that matches HTML

tags exactly can be quite fruitful, especially when we delve into more advanced
tools in the next chapter.

Looking at simple cases like ‘<TITLE>’ and ‘<HR>’, we might think to try !<.+>".
This simplistic approach is a frequent first thought, but it’s certainly incorrect. Con-
verting !<.+>" into English reads “match a ‘<’, followed by as much of anything as
can be matched, followed by ‘>’.” Well, when phrased that way, it shouldn’t be sur-
prising that it can match more than just one tag, such as the marked portion of
‘this <I>short</I> example’.

This might have been a bit surprising, but we’re still in the first chapter, and our
understanding at this point is only superficial. I have this example here to high-
light that regular expressions are not a difficult subject, but they can be tricky if
you don’t truly understand them. Over the next few chapters, we’ll look at all the
details requir ed to understand and solve this problem.

Time of day, such as “9:17 am” or “12:30 pm”

Matching a time can be taken to varying levels of strictness. Something such as

![0-9]?[0-9]:[0-9][0-9] (am;pm) "

picks up both 9:17 am and 12:30 pm, but also allows something nonsensical like
99:99 pm.

Looking at the hour, we realize that if it is a two-digit number, the first digit must
be a one. But, !1?[0-9] " still allows an hour of 19 (and also an hour of 0), so
maybe it is better to break the hour part into two possibilities: !1[012] " for two-
digit hours and ![1-9] " for single-digit hours. The result is !(1[012]<[1-9])".

The minute part is easier. The first digit should be ![0-5] ". For the second, we can
stick with the current ![0-9] ". This gives !(1[012];[1-9]):[0-5][0-9] (am;pm) "

when we put it all together.

Using the same logic, can you extend this to handle 24-hour time with hours from
0 thr ough 23? As a challenge, allow for a leading zero, at least through to 09:59.

v Try building your solution, and then turn the page to check mine.

27 April 2003 17:11

Regular Expression Nomenclature
Regex

As you might guess, using the full phrase “regular expression” can get a bit tiring,
particularly in writing. Instead, I normally use “regex.” It just rolls right off the
tongue (it rhymes with “FedEx,” with a hard g sound like “regular” and not a soft
one like in “Regina”) and it is amenable to a variety of uses like “when you
regex...,” “budding regexers,” and even “regexification.”† I use the phrase “regex
engine” to refer to the part of a program that actually does the work of carrying
out a match attempt.

Matching

When I say a regex “matches” a string, I really mean that it matches in a string.
Technically, the regex !a " doesn’t match cat, but matches the a in cat. It’s not
something that people tend to confuse, but it’s still worthy of mention.

Metacharacter

Whether a character is a metacharacter (or “metasequence”—I use the words inter-
changeably) depends on exactly where in the regex it’s used. For example, ! + " is a
metacharacter, but only when it’s not within a character class and when not
escaped. “Escaped” means that it has a backslash in front of it—usually. The star is
escaped in !\+ ", but not in !\\+ " (wher e the first backslash escapes the second),
although the star “has a backslash in front of it” in both examples.

Depending upon the regex flavor, ther e ar e various situations when certain charac-
ters are and aren’t metacharacters. Chapter 3 discusses this in more detail.

Flavor

As I’ve hinted, differ ent tools use regular expressions for many differ ent things,
and the set of metacharacters and other features that each support can differ. Let’s
look at word boundaries again as an example. Some versions of egr ep support the
\<˙˙˙\> notation we’ve seen. However, some do not support the separate word-
start and word-end, but one catch-all !\b " metacharacter (which we haven’t seen
yet — we’ll see it in the next chapter). Still others support both, and many others
support neither.

I use the term “flavor” to describe the sum total of all these little implementation
decisions. In the language analogy, it’s the same as a dialect of an individual
speaker. Super ficially, this concept refers to which metacharacters are and aren’t

† You might also come across the decidedly unsightly “regexp.” I’m not sure how one would pro-
nounce that, but those with a lisp might find it a bit easier.

Expanding the Foundation 27

27 April 2003 17:11

28 Chapter 1: Introduction to Regular Expressions

Extending the Time Regex to Handle a 24-Hour Clock
v Answer to the question on page 26.

Ther e ar e various solutions, but we can use similar logic as before. This time,
I’ll break the task into three groups: one for the morning (hours 00 thr ough
09, with the leading zero being optional), one for the daytime (hours 10
thr ough 19), and one for the evening (hours 20 thr ough 23). This can be
render ed in a pretty straightforward way: !0?[0-9]<1[0-9]<2[0-3] ".

Actually, we can combine the first two alternatives, resulting in the shorter
![01]?[0-9]<2[0-3] ". You might need to think about it a bit to convince
yourself that they’ll really match exactly the same text, but they do. The fig-
ur e below might help, and it shows another approach as well. The shaded
gr oups repr esent numbers that can be matched by a single alternative.

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23

01 02 03 04 05 06 07 08 09

0800

00

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23

 1 2 3 4 5 6 7 8 9

0800

 0

[01]?[0-9]|2[0-3] [01]?[4-9]|[012]?[0-3]

supported, but there’s much more to it. Even if two programs both support
!\<˙˙˙\> ", they might disagree on exactly what they do and don’t consider to be a
word. This concern is important when you use the tool.

Don’t confuse “flavor” with “tool.” Just as two people can speak the same dialect,
two completely differ ent pr ograms can support exactly the same regex flavor.
Also, two programs with the same name (and built to do the same task) often
have slightly (and sometimes not-so-slightly) differ ent flavors. Among the various
pr ograms called egr ep, ther e is a wide variety of regex flavors supported.

In the late 1990s, the particularly expressive flavor offer ed by the Perl program-
ming language was widely recognized for its power, and soon other languages
wer e of fering Perl-inspir ed regular expressions (many even acknowledging the
inspirational source by labeling themselves “Perl-compatible”). The adopters
include Python, many Java regex packages, Microsoft’s .NET Framework, Tcl, and a
variety of C libraries, to name a few. Yet, all are dif ferent in important respects. On
top of this, Perl’s regular expressions themselves are evolving and growing (some-
times, now, in response to advances seen with other tools). As always, the overall
landscape continues to become more varied and confusing.

27 April 2003 17:11

Subexpression

The term “subexpr ession” simply refers to part of a larger expression, although it
often refers to some part of an expression within parentheses, or to an alternative
of !;". For example, with !ˆ(Subject;Date): ", the !Subject;Date " is usually
referr ed to as a subexpression. Within that, the alternatives !Subject " and !Date " ar e
each referr ed to as subexpressions as well. But technically, !S " is a subexpression,
as is !u ", and !b ", and !j", . . .

Something such as 1-6 isn’t considered a subexpression of !H[1-6] + ", since the
‘1-6’ is part of an unbreakable “unit,” the character class. But, !H ", ![1-6] ", and ! + "

ar e all subexpressions of !H[1-6] + ".

Unlike alternation, quantifiers (star, plus, and question mark) always work with the
smallest immediately-preceding subexpression. This is why with !mis+pell ", the +

gover ns the !s ", not the !mis " or !is ". Of course, when what immediately precedes a
quantifier is a parenthesized subexpression, the entire subexpr ession (no matter
how complex) is taken as one unit.

Character

The word “character” can be a loaded term in computing. The character that a
byte repr esents is merely a matter of interpretation. A byte with such-and-such a
value has that same value in any context in which you might wish to consider it,
but which character that value repr esents depends on the encoding in which it’s
viewed. As a concrete example, two bytes with decimal values 64 and 53 repr e-
sent the characters “@” and “5” respectively, if considered in the ASCII encoding,
yet on the other hand are completely differ ent if considered in the EBCDIC encod-
ing (they are a space and some kind of a control character).

On the third hand, if those two bytes are consider ed in one of the popular encod-
ings for Japanese characters, together they repr esent the single character a. Yet,
to repr esent this same character in another of the Japanese encodings requir es two
completely differ ent bytes. Those two differ ent bytes, by the way, yield the two
characters “Àµ” in the popular Latin-1 encoding, but yield the one Korean charac-
ter k in one of the Unicode encodings.† The point is this: how bytes are to be
interpr eted is a matter of perspective (called an encoding), and to be successful,
you’ve got to make sure that your perspective agrees with the perspective taken
by the tool you’re using.

† The definitive book on multiple-byte encodings is Ken Lunde’s CJKV Information Processing, also
published by O’Reilly & Associates. The CJKV stands for Chinese, Japanese, Kor ean, and Vietnamese,
which are languages that tend to requir e multiple-byte encodings. Ken and Adobe kindly provided
many of the special fonts used in this book.

Expanding the Foundation 29

27 April 2003 17:11

30 Chapter 1: Introduction to Regular Expressions

Until recently, text-processing tools generally treated their data as a bunch of
ASCII bytes, without regard to the encoding you might be intending. Recently,
however, mor e and more systems are using some form of Unicode to process data
inter nally (Chapter 3 includes an introduction to Unicode + 105). On such sys-
tems, if the regular-expr ession subsystem has been implemented properly, the user
doesn’t normally have to pay much attention to these issues. That’s a big “if,”
which is why Chapter 3 looks at this issue in depth.

Improving on the Status Quo
When it comes down to it, regular expressions are not difficult. But, if you talk to
the average user of a program or language that supports them, you will likely find
someone that understands them “a bit,” but does not feel secure enough to really
use them for anything complex or with any tool but those they use most often.

Traditionally, regular expression documentation tends to be limited to a short and
incomplete description of one or two metacharacters, followed by a table of the
rest. Examples often use meaningless regular expressions like !a+((ab)+;b+)", and
text like ‘a xxx ce xxxxxx ci xxx d’. They also tend to completely ignore subtle
but important points, and often claim that their flavor is the same as some other
well-known tool, almost always forgetting to mention the exceptions where they
inevitably differ. The state of regex documentation needs help.

Now, I don’t mean to imply that this chapter fills the gap for all regular expres-
sions, or even for egr ep regular expressions. Rather, this chapter merely provides
the foundation upon which the rest of this book is built. It may be ambitious, but I
hope this book does fill the gaps for you. I received many gratifying responses to
the first edition, and have worked very hard to make this one even better, both in
br eadth and in depth.

Perhaps because regular-expr ession documentation has traditionally been so lack-
ing, I feel the need to make the extra effort to make things particularly clear.
Because I want to make sure you can use regular expressions to their fullest
potential, I want to make sure you really, really understand them.

This is both good and bad.

It is good because you will learn how to think regular expressions. You will learn
which differ ences and peculiarities to watch out for when faced with a new tool
with a differ ent flavor. You will know how to express yourself even with a weak,
stripped-down regular expression flavor. You will understand what makes one
expr ession mor e ef ficient than another, and will be able to balance tradeoffs
among complexity, efficiency, and match results. When faced with a particularly
complex task, you will know how to work through an expression the way the

27 April 2003 17:11

pr ogram would, constructing it as you go. In short, you will be comfortable using
regular expressions to their fullest.

The problem is that the learning curve of this method can be rather steep, with
thr ee separate issues to tackle:

• How regular expressions are used Most programs use regular expressions in
ways that are mor e complex than egr ep. Befor e we can discuss in detail how
to write a really useful expression, we need to look at the ways regular
expr essions can be used. We start in the next chapter.

• Regular expression features Selecting the proper tool to use when faced with
a problem seems to be half the battle, so I don’t want to limit myself to only
using one utility throughout this book. Differ ent pr ograms, and often even dif-
fer ent versions of the same program, provide differ ent featur es and metachar-
acters. We must survey the field before getting into the details of using them.
This is the subject of Chapter 3.

• How regular expressions really work Befor e we can learn from useful (but
often complex) examples, we need to “look under the hood” to understand
just how a regular expression search is conducted. As we’ll see, the order in
which certain metacharacters are checked can be very important. In fact, regu-
lar expression engines can be implemented in differ ent ways, so differ ent pr o-
grams sometimes do differ ent things with the same expression. We examine
this meaty subject in Chapters 4, 5, and 6.

This last point is the most important and the most difficult to address. The discus-
sion is unfortunately sometimes a bit dry, with the reader chomping at the bit to
get to the fun part — tackling real problems. However, understanding how the
regex engine really works is the key to really understanding.

You might argue that you don’t want to be taught how a car works when you sim-
ply want to know how to drive. But, learning to drive a car is a poor analogy for
lear ning about regular expressions. My goal is to teach you how to solve problems
with regular expressions, and that means constructing regular expressions. The
better analogy is not how to drive a car, but how to build one. Before you can
build a car, you have to know how it works.

Chapter 2 gives more experience with driving. Chapter 3 takes a short look at the
history of driving, and a detailed look at the bodywork of a regex flavor. Chapter 4
looks at the all-important engine of a regex flavor. Chapter 5 shows some
extended examples, Chapter 6 shows you how to tune up certain kinds of
engines, and the chapters after that examine some specific makes and models. Par-
ticularly in Chapters 4, 5, and 6, we’ll spend a lot of time under the hood, so make
sur e to have your coveralls and shop rags handy.

Expanding the Foundation 31

27 April 2003 17:11

32 Chapter 1: Introduction to Regular Expressions

Summar y
Table 1-3 summarizes the egr ep metacharacters we’ve looked at in this chapter.

Table 1-3: Egr ep Metacharacter Summary

Items to Match a Single Character
Metacharacter Matches

. dot Matches any one character
[˙˙˙] character class Matches any one character listed
[ˆ˙˙˙] negated character class Matches any one character not listed
\char escaped character When char is a metacharacter, or the escaped

combination is not otherwise special, matches
the literal char

Items Appended to Provide “Counting” : The Quantifiers

? question One allowed, but it is optional
+ star Any number allowed, but all are optional
+ plus At least one requir ed; additional are optional
{min,max} specified range † Min requir ed, max allowed

Items That Match a Position

ˆ car et Matches the position at the start of the line
$ dollar Matches the position at the end of the line
\< wor d boundary † Matches the position at the start of a word
\> wor d boundary † Matches the position at the end of a word

Other

; alter nation Matches either expression it separates
(˙˙˙) par entheses Limits scope of alternation, provides grouping

for the quantifiers, and “captures” for
backr efer ences

\1, \2, ... backr efer ence † Matches text previously matched within first,
second, etc., set of parentheses.

†not supported by all versions of egrep

In addition, be sure that you understand the following points:

• Not all egr ep pr ograms ar e the same. The metacharacters supported, as well as
their exact meanings, are often differ ent — see your local documentation
(+ 23).

• Thr ee reasons for using parentheses are constraining alternation (+ 13),
gr ouping (+ 14), and capturing (+ 21).

• Character classes are special, and have their own set of metacharacters totally
distinct from the “main” regex language (+ 10).

27 April 2003 17:11

• Alter nation and character classes are fundamentally differ ent, pr oviding unr e-
lated services that appear, in only one limited situation, to overlap (+ 13).

• A negated character class is still a “positive assertion” — even negated, a char-
acter class must match a character to be successful. Because the listing of char-
acters to match is negated, the matched character must be one of those not
listed in the class (+ 12).

• The useful -i option discounts capitalization during a match (+ 15).

• Ther e ar e thr ee types of escaped items:

1. The pairing of !\" and a metacharacter is a metasequence to match the
literal character (for example, !\+ " matches a literal asterisk).

2. The pairing of !\" and selected non-metacharacters becomes a
metasequence with an implementation-defined meaning (for example, !\<"

often means “start of word”).

3. The pairing of !\" and any other character defaults to simply matching the
character (that is, the backslash is ignored).

Remember, though, that a backslash within a character class is not special at
all with most versions of egr ep, so it provides no “escape services” in such a
situation.

• Items governed by a question mark or star don’t need to actually match any
characters to “match successfully.” They are always successful, even if they
don’t match anything (+ 17).

Personal Glimpses
The doubled-word task at the start of this chapter might seem daunting, yet regu-
lar expressions are so power ful that we could solve much of the problem with a
tool as limited as egr ep, right here in the first chapter. I’d like to fill this chapter
with flashy examples, but because I’ve concentrated on the solid foundation for
the later chapters, I fear that someone completely new to regular expressions
might read this chapter, complete with all the warnings and cautions and rules and
such, and feel “why bother?”

Recently, my brothers were teaching some friends how to play schaf fkopf, a card
game that’s been in my family for generations. It is much more exciting than it
appears at first glance, but has a rather steep learning curve. After about half an
hour, my sister-in-law Liz, normally the quintessence of patience, got frustrated
with the seemingly complex rules and said “Can’t we just play rummy?” Yet, as it
tur ned out, they ended up playing late into the night. Once they were able to get

Personal Glimpses 33

27 April 2003 17:11

34 Chapter 1: Introduction to Regular Expressions

over the initial hump of the learning curve, a first-hand taste of the excitement was
all it took to hook them. My brothers knew it would, but it took some time and
work to get to the point where Liz and the others new to the game could appreci-
ate what they were getting into.

It might take some time to become acclimated to regular expressions, so until you
get a real taste of the excitement by using them to solve your pr oblems, it might
all feel just a bit too academic. If so, I hope you will resist the desire to “play
rummy.” Once you understand the power that regular expressions provide, the
small amount of work spent learning them will feel trivial indeed.

27 April 2003 17:11

