
5
Practical Regex Techniques

Now that we’ve covered the basic mechanics of writing regular expressions, I’d
like to put that understanding to work in handling situations more complex than
those in earlier chapters. Every regex strikes a balance between matching what
you want, but not matching what you don’t want. We’ve already seen plenty of
examples where greediness can be your friend if used skillfully, and how it can
lead to pitfalls if you’re not careful, and we’ll see plenty more in this chapter.

For an NFA engine, another part of the balance, discussed primarily in the next
chapter, is efficiency. A poorly designed regex—even one that would otherwise be
consider ed corr ect—can cripple an engine.

This chapter is comprised mostly of examples, as I lead you through my thought
pr ocesses in solving a number of problems. I encourage you to read through them
even if a particular example seems to offer nothing toward your immediate needs.

For instance, even if you don’t work with HTML, I encourage you to absorb the
examples that deal with HTML. This is because writing a good regular expression is
mor e than a skill — it’s an art. One doesn’t teach or learn this art with lists or rules,
but rather, thr ough experience, so I’ve written these examples to illustrate for you
some of the insight that experience has given me over the years.

You’ll still need your own experience to internalize that insight, but spending time
with the examples in this chapter is a good first step.

185

29 April 2003 09:22

186 Chapter 5: Practical Regex Techniques

Regex Balancing Act
Writing a good regex involves striking a balance among several concerns:

• Matching what you want, but only what you want

• Keeping the regex manageable and understandable

• For an NFA, being efficient (creating a regex that leads the engine quickly to a
match or a non-match, as the case may be)

These concerns are often context-dependent. If I’m working on the command line
and just want to gr ep something quickly, I probably don’t care if I match a bit
mor e than I need, and I won’t usually be too concerned to craft just the right
regex for it. I’ll allow myself to be sloppy in the interest of time, since I can
quickly peruse the output for what I want. However, when I’m working on an
important program, it’s worth the time and effort to get it right: a complex regular
expr ession is okay if that’s what it takes. There is a balance among all these issues.

Ef ficiency is context-dependent, even in a program. For example, with an NFA,
something long like !ˆ-(display;geometry;cemap; ˙˙˙;quick24;random;raw)$ "

to check command-line arguments is inefficient because of all that alternation, but
since it is only checking command-line arguments (something done perhaps a few
times at the start of the program) it wouldn’t matter if it took 100 times longer than
needed. It’s just not an important place to worry much about efficiency. Wer e it
used to check each line of a potentially large file, the inefficiency would penalize
you for the duration of the program.

A Few Shor t Examples
Continuing with Continuation Lines
With the continuation-line example from the previous chapter (+ 178), we found
that !ˆ\w+ = .+(\\ \n.,), " applied with a Traditional NFA doesn’t properly match
both lines of:

SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c \
missing.c msg.c node.c re.c version.c

The problem is that the first ! .+ " matches past the backslash, pulling it out from
under the !(\\\n.+)+ " that we want it to be matched by. Well, here’s the first les-
son of the chapter: if we don’t want to match past the backslash, we should say
that in the regex. We can do this by changing each dot to ![ˆ\n \\] ". (Notice how
I’ve made sure to include \n in the negated class? You’ll remember that one of the
assumptions of the original regex was that dot didn’t match a newline, and we
don’t want its replacement to match a newline either + 118.)

29 April 2003 09:22

Making that change, we get:

!ˆ\w+ =[ˆ\n \\]+(\\ \n[ˆ\n \\]+)+ "

This now works, properly matching continuation lines, but in solving one prob-
lem, we have perhaps introduced another: we’ve now disallowed backslashes
other than those at the end of lines. This is a problem if the data to which it will
be applied could possibly have other backslashes. We’ll assume it could, so we
need to accommodate the regex to handle them.

So far, our approaches have been along the lines of “match the line, then try to
match a continuation line if there.” Let’s change that approach to one that I find
often works in general: concentrate on what is really allowed to match at any par-
ticular point. As we match the line, we want either normal (non-backslash, non-
newline) characters, or a backslash-anything combination. If we use !\\. " for the
backslash-anything combination, and apply it in a dot-matches-all mode, it also
can match the backslash-newline combination.

So, the expression becomes !ˆ\w+ =([ˆ\n \\]<\\ .), " in a dot-matches-all mode.
Due to the leading !ˆ ", an enhanced line anchor match mode (+ 111) may be use-
ful as well, depending on how this expression is used.

But, we’re not quite done with this example yet—we’ll pick it up again in the next
chapter where we work on its efficiency (+ 270).

Matching an IP Address
As another example that we’ll take much further, let’s match an IP (Inter net Pr oto-
col) address: four numbers separated by periods, such as 1.2.3.4. Often, the
numbers are padded to three digits, as in 001.002.003.004. If you want to check
a string for one of these, you could use ![0-9]+\.[0-9]+\.[0-9]+\.[0-9]+ ", but
that’s so vague that it even matches ‘and then?’. Look at the regex: it
doesn’t even requir e any numbers — its only requir ements ar e thr ee periods (with
nothing but digits, if anything, between).

To fix this regex, we first change the star to a plus, since we know that each num-
ber must have at least one digit. To ensur e that the entire string is only the IP

addr ess, we wrap the regex with !ˆ˙˙˙$ ". This gives us:

!ˆ[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+$ "

Using !\d " instead of ![0-9] ", it becomes !ˆ\d+\.\d+\.\d+\.\d+$ ", which you may
find to be more easily readable,† but it still matches things that aren’t IP addr esses,

† Or maybe not — it depends on what you are used to. In a complex regex, I find !\d " mor e readable
than ![0-9] ", but note that on some systems, the two might not be exactly the same. Systems that sup-
port Unicode, for example, may have their !\d " match non-ASCII digits as well (+ 119).

A Few Shor t Examples 187

29 April 2003 09:22

188 Chapter 5: Practical Regex Techniques

like ‘1234.5678.9101112.131415’. (IP addr esses have each number in the range
of 0–255.) As a start, you can enforce that each number be three digits long, with
!ˆ\d\d\d\.\d\d\d\.\d\d\d\.\d\d\d$ ". but now we are too specific. We still
need to allow one- and two-digit numbers (as in 1.234.5.67). If the flavor sup-
ports {min,max}, you can use !ˆ\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$ ". If not,
you can always use !\d\d?\d? " or !\d(\d\d?)? " for each part. These allow one to
thr ee digits, each in a slightly differ ent way.

Depending on your needs, you might be happy with some of the various degrees
of vagueness in the expressions so far. If you really want to be strict, you have to
worry that !\d{1,3} " can match 999, which is above 255, and thus an invalid com-
ponent of an IP addr ess.

Several approaches would ensure that only numbers from 0 to 255 appear. One
silly approach is !0;1;2;3;˙˙˙253;254;255 ". Actually, this doesn’t allow the zero-
padding that is allowed, so you really need !0;00;000;1;01;001;˙˙˙ ", whose length
becomes even more ridiculous. For a DFA engine, it is ridiculous only in that it’s so
long and verbose — it still matches just as fast as any regex describing the same
text. For an NFA, however, all the alternation kills efficiency.

A realistic approach concentrates on which digits are allowed in a number, and
wher e. If a number is only one or two digits long, there is no worry as to whether
the value is within range, so !\d;\d\d " takes care of it. There’s also no worry about
the value for a three-digit number beginning with a 0 or 1, since such a number is
in the range 000–199 and is perfectly valid. This lets us add ![01]\d\d ", leaving us
with !\d<\d\d<[01]\d\d ". You might recognize this as being similar to the time
example in Chapter 1 (+ 28), and date example of the previous chapter (+ 177).

Continuing with our regular expression, a three-digit number beginning with a 2 is
allowed if the number is 255 or less, so a second digit less than 5 means the num-
ber is valid. If the second digit is 5, the third must be less than 6. This can all be
expr essed as !2[0-4]\d<25[0-5] ".

This may seem confusing at first, but the approach should make sense upon
reflection. The result is !\d<\d\d<[01]\d\d<2[0-4]\d<25[0-5] ". Actually, we can
combine the first three alternatives to yield ![01]?\d\d?<2[0-4]\d<25[0-5] ".
Doing so is more efficient for an NFA, since any alternative that fails results in a
backtrack. Note that using !\d\d? " in the first alternative, rather than !\d?\d ", allows
an NFA to fail just a bit more quickly when there is no digit at all. I’ll leave the
analysis to you—walking through a simple test case with both should illustrate the
dif ference. We could do other things to make this part of the expression more effi-
cient, but I’ll leave that for the next chapter.

29 April 2003 09:22

Now that we have a subexpression to match a single number from 0 through 255,
we can wrap it in parentheses and insert it in place of each !\d{1,3} " in the earlier
regex. This gives us (broken across lines to fit the width of the page):

!ˆ([01]?\d\d?<2[0-4]\d<25[0-5])\.([01]?\d\d?<2[0-4]\d<25[0-5])\.

([01]?\d\d?<2[0-4]\d<25[0-5])\.([01]?\d\d?<2[0-4]\d<25[0-5])$ "

Quite a mouthful! Was it worth the trouble? You have to decide for yourself based
upon your own needs. It matches only syntactically correct IP addr esses, but it can
still match semantically incorr ect ones, such as 0.0.0.0 (invalid because all the
digits are zer o). With lookahead (+ 132), you can disallow that specific case by
putting !(?!0+\.0+\.0+\.0+$) " after !ˆ ", but at some point, you have to decide
when being too specific causes the cost/benefit ratio to suffer from diminishing
retur ns. Sometimes it’s better to take some of the work out of the regex. For exam-
ple, if you go back to !ˆ\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$ " and wrap
each component in parentheses to stuff the numbers into the program’s version of
$1, $2, $3, and $4, you can then validate them by other programming constructs.

Know your context

It’s important to realize that the two anchors, !ˆ " and !$ ", are requir ed to make this
regex work. Without them, it can match ip=72123.3.21.993, or for a Traditional
NFA, even ip=123.3.21.223.

In that second case, the expression does not even fully match the final 223 that
should have been allowed. Well, it is allowed, but there’s nothing (such as a sepa-
rating period, or the trailing anchor) to force that match. The final group’s first
alter native, ![01]?\d\d? ", matched the first two digits, and without the trailing !$ ",
that’s the end of the regex. As with the date-matching problem in the previous
chapter (+ 176), we can arrange the order of the alternatives to achieve the
desir ed result. In this case, we would put the alternatives matching three digits
first, so any proper three-digit number is matched in full before the two-digit-okay
alter native is given a chance. (DFAs and POSIX NFAs don’t requir e the reordering,
of course, since they choose the longest match, regardless.)

Rearranged or not, that first mistaken match is still a problem. “Ah!” you might
think, “I can use word boundary anchors to solve this problem.” Unfortunately,
that’s probably not enough, since such a regex could still match 1.2.3.4.5.6. To
disallow embedded matches, you must ensure that the surrounding context has at
least no alphanumerics or periods. If you have lookaround, you can wrap the
regex in !(?<![\w.])˙˙˙(?![\w.])" to disallow matches that follow just after (or
end just before) where ![\w.] " can match. If you don’t have lookaround, simply
wrapping it in !(ˆ;)˙˙˙(;$) " might be satisfactory for some situations.

A Few Shor t Examples 189

29 April 2003 09:22

190 Chapter 5: Practical Regex Techniques

Working with Filenames
Working with file and path names, like /usr/local/bin/perl on Unix, or per-
haps something like \Program Files\Yahoo!\Messenger on Windows, can pro-
vide many good regular-expr ession examples. Since “using” is more inter esting
than “reading,” I’ll sprinkle in a few examples coded in Perl, Java, and VB.NET. If
you’r e not interested in these particular languages, feel free to skip the code snip-
pets—it’s the regex concepts used in them that are important.

Removing the leading path from a filename

As a first example, let’s remove the leading path from a filename, turning
/usr/local/bin/gcc, for instance, into gcc. Stating problems in a way that
makes solutions amenable is half of the battle. In this case, we want to remove
anything up to (and including) the final slash (backslash for Windows pathnames).
If there is no slash, it’s fine as is, and nothing needs to be done. I’ve said a num-
ber of times that ! .+ " is often overused, but its greediness is desired here. With
!ˆ.+/", the ! .+ " consumes the whole line, but then backs off (that is, backtracks) to
the last slash to achieve the match.

Her e’s code to do it in our three test languages, ensuring that a filename in the
variable f has no leading path. First, for Unix filenames:

Langua ge Code Snippet

Perl $f =˜ s{ˆ.+/}{};

java.util.regex f = f.replaceFirst("ˆ.+/", "");

VB.NET f = Regex.Replace(f, "ˆ.+/", "")

The regular expression (or string to be interpreted as a regular expression) is
underlined, and regex components are bold.

For comparison, here they are for Windows filenames:

Langua ge Code Snippet

Perl $f =˜ s/ˆ.+\\//;

java.util.regex f = f.replaceFirst("ˆ.+\\\\", "");

VB.NET f = Regex.Replace(f, "ˆ.+\\", "")

It’s interesting to compare the differ ences needed for each language when going
fr om one example to the other, particularly the quadruple backslashes needed in
Java (+ 101).

Please keep in mind this key point: always consider what will happen if there is
no match. In this case, if there is no slash in the string, no substitution is done and
the string is left unchanged. That’s just what we want.

29 April 2003 09:22

For efficiency’s sake, it’s important to remember how the regex engine goes about
its work, if it is NFA-based. Let’s consider what happens if we omit the leading
car et (something that’s easy to forget) and match against a string that doesn’t hap-
pen to have a slash. As always, the regex engine starts the search at the beginning
of the string. The ! .+ " races to the end of the string, but must back off to find a
match for the slash or backslash. It eventually backs off everything that ! .+ " had
gobbled up, yet there’s still no match. So, the regex engine decides that there is no
possible match when starting from the beginning of the string, but it’s not
done yet!

The transmission kicks in and retries the whole regex from the second character
position. In fact, it needs (in theory) to go through the whole scan-and-backtrack
routine for each possible starting position in the string. Filenames tend to be short,
so it’s probably not such a big deal in this case, but the principle applies to many
situations. Wer e the string long, there’s a potential for a lot of backtracking. (A DFA

has no such problem, of course.)

In practice, a reasonably optimized transmission realizes that almost any regex
starting with ! .+ " that fails at the beginning of the string can never match when
started from anywhere else, so it can shift gears and attempt the regex only the
one time, at the start of the string (+ 246). Still, it’s smarter to write that into our
regex in the first place, as we originally did.

Accessing the filename from a path

Another approach is to bypass the path and simply match the trailing filename part
without the path. The final filename is everything at the end that’s not a slash:
![ˆ/]+$ ". This time, the anchor is not just an optimization; we really do need dollar
at the end. We can now do something like this, shown with Perl:

$WholePath =˜ m{([ˆ/]+)$ }; # Check variable $WholePath with regex.
$FileName = $1; # Note text matched

You’ll notice that I don’t check to see whether the regex actually matches, because
I know it will match every time. The only requir ement of that expression is that
the string has an end to match dollar, and even an empty string has an end. Thus,
when I use $1 to refer ence the text matched within the parenthetical subexpres-
sion, I’m assured it will have some value (although that value will be empty when
the filename ends with a slash).

Another comment on efficiency: with an NFA, ![ˆ/]+$ " is very inefficient. Carefully
run through how the NFA engine attempts the match and you see that it can
involve a lot of backtracking. Even the short sample ‘/usr/local/bin/perl’
backtracks over 40 times before finally matching. Consider the attempt that starts

A Few Shor t Examples 191

29 April 2003 09:22

192 Chapter 5: Practical Regex Techniques

at ˙˙˙local/˙˙˙. Once ![ˆ/]+ " matches through to the second l and fails on the
slash, the !$ " is tried (and fails) for each l, a, c, o, l saved state. If that’s not
enough, most of it is repeated with the attempt that starts at ˙˙˙local/˙˙˙, and then
again ˙˙˙local/˙˙˙, and so on.

It shouldn’t concern us too much with this particular example, as filenames tend to
be short. (And 40 backtracks is nothing — 40 million is when they really matter!)
Again, it’s important to be aware of the issues so the general lessons here can be
applied to your specific needs.

This is a good time to point out that even in a book about regular expressions,
regular expressions aren’t always The Best Answer. For example, most program-
ming languages provide non-regex routines for dealing with filenames. But, for the
sake of discussion, I’ll forge ahead.

Both leading path and filename

The next logical step is to pick apart a full path into both its leading path and file-
name component. There are many ways to do this, depending on what we want.
Initially, you might want to use !ˆ(.+)/(.+)$ " to fill $1 and $2 with the requisite
parts. It looks like a nicely balanced regular expression, but knowing how greedi-
ness works, we are guaranteed that the first ! .+ " does what we want, never leaving
anything with a slash for $2. The only reason the first ! .+ " leaves anything at all is
due to the backtracking done in trying to match the slash that follows. This leaves
only that “backtracked” part for the later ! .+ ". Thus, $1 is the full leading path and
$2 the trailing filename.

One thing to note: we are relying on the initial !(.+)/" to ensure that the second
!(.+)" does not capture any slash. We understand greediness, so this is okay. Still I
like to be specific when I can, so I’d rather use ![ˆ/]+ " for the filename part. That
gives us !ˆ(.+)/([ˆ/]+)$ ". Since it shows exactly what we want, it acts as docu-
mentation as well.

One big problem is that this regex requir es at least one slash in the string, so if we
try it on something like file.txt, ther e’s no match, and thus no information. This
can be a feature if we deal with it properly:

if ($WholePath =˜ m!ˆ(.+)/([ˆ/]+)$!) {
Have a match -- $1 and $2 are valid
$LeadingPath = $1;
$FileName = $2;

} else {
No match, so there’s no ‘/’ in the filename
$LeadingPath = "."; # so "file.txt" looks like ". / file.txt" ("." is the current directory)
$FileName = $WholePath;

}

29 April 2003 09:22

Matching Balanced Sets of Parentheses
Matching balanced sets of parentheses, brackets, and the like presents a special
dif ficulty. Wanting to match balanced parentheses is quite common when parsing
many kinds of configuration files, programs, and such. Imagine, for example, that
you want to do some processing on all of a function’s arguments when parsing a
language like C. Function arguments are wrapped in parentheses following the
function name, and may themselves contain parentheses resulting from nested
function calls or math grouping. At first, ignoring that they may be nested, you
might be tempted to use !\b foo\([ˆ)]+\)", but it won’t work.

In hallowed C tradition, I use foo as the example function name. The marked part
of the expression is ostensibly meant to match the function’s arguments. With
examples such as foo(2, 4.0) and foo(somevar, 3.7), it works as expected.
Unfortunately, it also matches foo(bar(somevar), 3.7), which is not as we
want. This calls for something a bit “smarter” than ![ˆ)]+ ".

To match the parenthesized expression part, you might consider the following reg-
ular expressions, among others:

1. \(.+\) literal parentheses with anything in between
2. \([ˆ)]+\) fr om an opening parenthesis to the next closing parenthesis
3. \([ˆ()]+\) fr om an opening parenthesis to the next closing parenthesis, but

no other opening parentheses allowed in between

Figur e 5-1 illustrates where these match against a sample line of code.

val = foo(bar(this), 3.7) + 2 * (that - 1);

desired match

regex #2 would match

regex #1 would match

Figur e 5-1: Match locations of our sample regexes

We see that regex #1 matches too much,† and regex #2 matches too little. Regex #3
doesn’t even match successfully. In isolation, #3 would match ‘(this)’, but
because it must come immediately after the foo, it fails. So, none of these work.

† The use of ! .+ " should set off war ning alar ms. Always pay particular attention to decide whether dot
is really what you want to apply star to. Sometimes that is exactly what you need, but ! .+ " is often
used inappropriately.

A Few Shor t Examples 193

29 April 2003 09:22

194 Chapter 5: Practical Regex Techniques

The real problem is that on the vast majority of systems, you simply can’t match
arbitrarily nested constructs with regular expressions. For a long time, this was uni-
versally true, but recently, both Perl and .NET of fer constructs that make it possi-
ble. (See pages 328 and 430, respectively.) But, even without these special
constructs, you can still build a regex to match things nested to a certain depth,
but not to an arbitrary level of nesting. Just one level of nesting requir es

!\([ˆ()]+(\([ˆ()]+\)[ˆ()]+),\) "

so the thought of having to worry about further levels of nesting is frightening.
But, here’s a little Perl snippet that, given a $depth, creates a regex to match up to
that many levels of parentheses beyond the first. It uses Perl’s “string x count”
operator, which replicates string by count times:

$regex = ’\(’ . ’(?:[ˆ()];\(’ x $depth . ’[ˆ()]+’ . ’\))+’ x $depth . ’\)’;

I’ll leave the analysis for your free time.

Watching Out for Unwanted Matches
It’s easy to forget what happens if the text is not formed just as you expect. Let’s
say you are writing a filter to convert a text file to HTML, and you want to replace
a line of hyphens by <HR>, which repr esent a horizontal rule (a line across the
page). If you used a s/-+/<HR>/ search-and-r eplace command, it would replace
the sequences you wanted, but only when they’re at the beginning of the line.
Surprised? In fact, s/-+/<HR>/ adds <HR> to the beginning of every line, whether
they begin with a sequence of hyphens or not!

Remember, anything that isn’t requir ed is always considered successful. The first
time !-+ " is attempted at the start of the string, it matches any hyphens that might
be there. However, if ther e ar en’t any, it is still happy to successfully match noth-
ing. That’s what star is all about.

Let’s look at a similar example I once saw in a book by a respected author, in
which he describes a regular expression to match a number, either integer or float-
ing-point. As his expression is constructed, such a number has an optional leading
minus sign, any number of digits, an optional decimal point, and any number of
digits that follow. His regex is !-?[0-9]+\.?[0-9]+ ".

Indeed, this matches such examples as 1, -272.37, 129238843., .191919,
and even something like -.0. This is all good, and as expected.

However, how do you think it matches in a string like ‘this has no number’,
‘nothing here’, or even an empty string? Look at the regex closely — everything is
optional. If a number is there, and if it is at the beginning of the string, it is
matched, but nothing is requir ed. This regex can match all three non-number

29 April 2003 09:22

examples, matching the nothingness at the beginning of the string each time. In
fact, it even matches nothingness at the beginning of an example like ‘num 123’,
since that nothingness matches earlier than the number would.

So, it’s important to say what you really mean. A floating-point number must have
at least one digit in it, or it’s not a number (!). To construct our regex, let’s first
assume there is at least one digit before the decimal point. (We’ll remove this
requir ement later.) If so, we need to use plus for those digits: !-?[0-9]+ ".

Writing the subexpression to match an optional decimal point (and subsequent
digits) hinges on the realization that any numbers after the decimal point are con-
tingent upon there being a decimal point in the first place. If we use something
naïve like !\.?[0-9]+ ", the ![0-9]+ " gets a chance to match regardless of the deci-
mal point’s presence.

The solution is, again, to say what we mean. A decimal point (and subsequent dig-
its, if any) is optional: !(\.[0-9]+)? ". Her e, the question mark no longer quantifies
(that is, governs or controls) only the decimal point, but instead the entire combi-
nation of the decimal point plus any following digits. Within that combination, the
decimal point is requir ed; if it is not there, ![0-9]+ " is not even reached.

Putting this all together, we have !-?[0-9]+(\.[0-9]+)? ". This still doesn’t allow
something like ‘.007’, since our regex requir es at least one digit before the deci-
mal point. If we change that part to allow zero digits, we have to change the other
so it doesn’t, since we can’t allow all digits to be optional (the problem we are try-
ing to correct in the first place).

The solution is to add an alternative that allows for the uncovered situation:
!-?[0-9]+(\.[0-9]+)?<-?\.[0-9]+ ". This now also allows just a decimal point
followed by (this time not optional) digits. Details, details. Did you notice that I
allowed for the optional leading minus in the second alternative as well? That’s
easy to forget. Of course, you could instead bring the !-? " out of the alternation, as
in !-?([0-9]+(\.[0-9]+)?<\.[0-9]+)".

Although this is an improvement on the original, it’s still more than happy to
match at ‘2003.04.12’. Knowing the context in which a regex is intended to be
used is an important part of striking the balance between matching what you
want, and not matching what you don’t want. Our regex for floating-point num-
bers requir es that it be constrained somehow by being part of a larger regex, such
as being wrapped by !ˆ˙˙˙$ ", or perhaps !num\s+=\s+˙˙˙$ ".

A Few Shor t Examples 195

29 April 2003 09:22

196 Chapter 5: Practical Regex Techniques

Matching Delimited Text
Matching a double-quoted string and matching an IP addr ess ar e just two exam-
ples of a whole class of matching problem that often arises: the desire to match
text delimited (or perhaps separated) by some other text. Other examples include:

• Matching a C comment, which is surrounded by ‘/+’ and ‘+/’.

• Matching an HTML tag, which is text wrapped by <˙˙˙>, such as <CODE>.

• Extracting items between HTML tags, such as the ‘super exciting’ of the
HTML ‘a <I>super exciting</I> offer!’

• Matching a line in a .mailr c file. This file gives email aliases, where each line
is in the form of

alias shorthand full-address

such as ‘alias jeff jfriedl@regex.info’. (Here, the delimiters are the
whitespace between each item, as well as the ends of the line.)

• Matching a quoted string, but allowing it to contain quotes if they are escaped,
as in ‘a passport needs a "2\"x3\" likeness" of the holder.’

• Parsing CSV (comma-separated values) files.

In general, the requir ements for such tasks can be phrased along the lines of:

1. Match the opening delimiter

2. Match the main text
(which is really “match anything that is not the closing delimiter”)

3. Match the closing delimiter

As I mentioned earlier, satisfying these requir ements can become complicated
when the closing delimiter has more than one character, or when it may appear
within the main text.

Allowing escaped quotes in double-quoted strings

Let’s look at the 2\"x3\" example, where the closing delimiter is a quote, yet can
appear within the main part if escaped. It’s easy enough to match the opening and
closing quotes; the trick is to match the main text without overshooting the closing
quote. Thinking clearly about which items the main text allows, we know that if a
character is not a double quote (in other words, if it’s ![ˆ"] "), it is certainly okay.
However, if it is a double quote, it is okay if preceded by a backslash. Translating
that literally, using lookbehind (+ 132) for the “if preceded” part, it becomes
!"([ˆ"]<(?<=\\)")+"", which indeed properly matches our 2\"x3\" example.

29 April 2003 09:22

This is a perfect example to show how unintended matches can sneak into a
seemingly proper regex, because as much as it seems to be correct, it doesn’t
always work. We want it to match the marked part of this silly example:

Darth Symbol: "/-;-\\" or "[ˆ-ˆ]"

but it actually matches:

Darth Symbol: "/-;-\\" or "[ˆ-ˆ]"

This is because the final quote of the first string indeed has a backslash before it.
That backslash is itself escaped, so it doesn’t escape the quote that follows (which
means the quote that follows does end the string). Our lookbehind doesn’t recog-
nize that the preceding backslash has been itself escaped, and considering that
ther e may be any number of preceding ‘\\’ sequences, it’s a can of worms to try
to solve this with lookbehind. The real problem is that a backslash that escapes a
quote is not being recognized as an escaping backslash when we first process it,
so let’s try a differ ent appr oach that tackles it from that angle.

Concentrating again at what kinds of things we want to match between the open-
ing and closing delimiter, we know that something escaped is okay (!\\. "), as well
as anything else other than the closing quote (![ˆ"] "). This yields !"(\\.<[ˆ"])+"".
Wonder ful, we’ve solved the problem! Unfortunately, not yet. Unwanted matches
can still creep in, such as with this example for which we expect no match
because the closing quote has been forgotten:

"You need a 2\"x3\" photo.

Why does it match? Recall the lessons from “Greediness and Laziness Always
Favor a Match” (+ 167). Even though our regex initially matches past that last
quote, as we want, it still backtracks after it finds that there is no ending quote, to:

at ‘˙˙˙2x\"3\" ˙˙˙’ matching !(\\.;[ˆ"]) "

Fr om that point, the ![ˆ"] " matches the backslash, leaving us at what the regex
can consider an ending quote.

An important lesson to take from this example is:

When backtracking can cause undesired matches in relation to alterna-
tion, it’s likely a sign that any success is just a happenstance due to the
ordering of the alternatives.

In fact, had our original regex had its alternatives reversed, it would match incor-
rectly in every string containing an escaped double quote. The problem is that one
alter native can match something that is supposed to be handled by the other.

So, how can we fix it? Well, just as in the continuation-lines example on page 186,
we must make sure that there’s no other way for that backslash to be matched,
which means changing ![ˆ"] ", to ![ˆ\\"] ", . This recognizes that both a double

A Few Shor t Examples 197

29 April 2003 09:22

198 Chapter 5: Practical Regex Techniques

quote and a backslash are “special” in this context, and must be handled accord-
ingly. The result is !"(\\.<[ˆ\\"])+"", which works just fine. (Although this regex
now works, it can still be improved so that it is much more efficient for NFA

engines; we’ll see this example quite a bit in the next chapter + 222.)

This example shows a particularly important moral:

Always consider the “odd” cases in which you don’t want a regex to
match, such as with “bad” data.

Our fix is the right one, but it’s interesting to note that if you have possessive
quantifiers (+ 140) or atomic grouping (+ 137), this regex can be written as
!"(\\.<[ˆ"]),+"" and !"(?>(\\.<[ˆ"])+)"" respectively. They don’t really fix the
pr oblem so much as hide it, disallowing the engine from backtracking back to
wher e the problem could show itself. Either way, they get the job done well.

Understanding how possessive quantifiers and atomic grouping help in this situa-
tion is extremely valuable, but I would still go ahead and make the previous fix
anyway, as it is more descriptive to the reader. Actually, in this case, I would want
to use possessive quantifiers or atomic grouping as well —not to solve the previous
pr oblem, but for efficiency, so that a failure fails more quickly.

Knowing Your Data and Making Assumptions
This is an opportune time to highlight a general point about constructing and
using regular expressions that I’ve briefly mentioned a few times. It is important to
be aware of the assumptions made about the kind of data with which, and situa-
tions in which, a regular expression will be used. Even something as simple as !a "

assumes that the target data is in the same character encoding (+ 105) as the
author intends. This is pretty much common sense, which is why I haven’t been
too picky about saying these things.

However, many assumptions that might seem obvious to one person are not nec-
essarily obvious to another. For example, the solution in the previous section
assumes that escaped newlines shouldn’t be matched, or that it will be applied in
a dot-matches-all mode (+ 110). If we really want to ensure that dot can match a
newline, we should write that by using !(?s:.) ", if supported by the flavor.

Another assumption made in the previous section is the type of data to which the
regex will be applied, as it makes no provisions for any other uses of double
quotes in the data. If you apply it to source code from almost any programming
language, for example, you’ll find that it breaks because there can be double
quotes within comments.

Ther e is nothing wrong with making assumptions about your data, or how you
intend a regex to be used. The problems, if any, usually lie in overly optimistic

29 April 2003 09:22

assumptions and in misunderstandings between the author’s intentions and how
the regex is eventually used. Documenting the assumptions can help.

Str ipping Leading and Trailing Whitespace
Removing leading and trailing whitespace from a line is not a challenging prob-
lem, but it’s one that seems to come up often. By far the best all-around solution is
the simple use of two substitutions:

s/ˆ\s+//;
s/\s+$//;

As a measure of efficiency, these use !+ " instead of ! + ", since there’s no benefit to
doing the substitution unless there is actually whitespace to remove.

For some reason, it seems to be popular to try to find a way to do it all in one
expr ession, so I’ll offer a few methods for comparison. I don’t recommend them,
but it’s educational to understand why they work, and why they’re not desirable.

s/\s+(.+?)\s+$/$1/s

This used to be given as a great example of lazy quantifiers, but not any
mor e, because people now realize that it’s so much slower than the simple
appr oach. (In Perl, it’s about 5× slower). The lack of speed is due to the need
to check !\s+$ " befor e each application of the lazy-quantified dot. That
requir es a lot of backtracking.

s/ˆ\s+((?:.+\S)?)\s+$/$1/s

This one looks more complex than the previous example, but its matching is
mor e straightforward, and is only twice as slow as the simple approach. After
the initial !ˆ\s+ " has bypassed any leading whitespace, the ! .+ " in the middle
matches all the way to the end of the text. The !\S " that follows forces it to
backtrack to the last non-whitespace in the text, thereby leaving the trailing
whitespace matched by the final !\s+$ ", outside of the capturing parentheses.

The question mark is needed so that this expression works properly on a line
that has only whitespace. Without it, it would fail to match, leaving the white-
space-filled line unchanged.

s/ˆ\s+;\s+$//g

This is a commonly thought-up solution that, while not incorrect (none of
these are incorr ect), it has top-level alternation that removes many optimiza-
tions (covered in the next chapter) that might otherwise be possible.

The /g modifier is requir ed to allow each alternative to match, to remove
both leading and trailing whitespace. It seems a waste to use /g when we
know we intend at most two matches, and each with a differ ent subexpr es-
sion. This is about 4× slower than the simple approach.

A Few Shor t Examples 199

29 April 2003 09:22

200 Chapter 5: Practical Regex Techniques

I’ve mentioned the relative speeds as I tested them, but in practice, the actual rela-
tive speeds are dependent upon the tool and the data. For example, if the target
text is very, very long, but has relatively little whitespace on either end, the middle
appr oach can be somewhat faster than the simple approach. Still, in my programs,
I use the language’s equivalent of

s/ˆ\s+//;
s/\s+$//;

because it’s almost always fastest, and is certainly the easiest to understand.

HTML-Related Examples
In Chapter 2, we saw an extended example that converted raw text to HTML

(+ 67), including regular expressions to pluck out email addresses and http URLs
fr om the text. In this section, we’ll do a few other HTML-r elated tasks.

Matching an HTML Tag
It’s common to see !<[ˆ>]+> " used to match an HTML tag. It usually works fine,
such as in this snippet of Perl that strips tags:

$html =˜ s/<[ˆ>]+>//g;

However, it matches improperly if the tag has ‘>’ within it, as with this perfectly
valid HTML: <input name=dir value=">">. Although it’s not common or recom-
mended, HTML allows a raw ‘<’ and ‘>’ to appear within a quoted tag attribute.
Our simple !<[ˆ>]+> " doesn’t allow for that, so, we must make it smarter.

Allowed within the ‘<˙˙˙>’ are quoted sequences, and “other stuff” characters that
may appear unquoted. This includes everything except ‘>’ and quotes. HTML

allows both single- and double-quoted strings. It doesn’t allow embedded quotes
to be escaped, which allows us to use simple regexes !"[ˆ"]+"" and !’[ˆ’]+’" to
match them.

Putting these together with the “other stuff” regex ![ˆ’">] ", we get:

!<("[ˆ"]+"<’[ˆ’]+’<[ˆ’">]),>"

That may be a bit confusing, so how about the same thing shown with comments
in a free-spacing mode:

< # Opening "<"
(# Any amount of . . .

"[ˆ"]+" # double-quoted string,
; # or . . .
’[ˆ’]+’ # single-quoted string,
; # or . . .
[ˆ’">] # "other stuff"

)+ #
> # Closing ">"

29 April 2003 09:22

The overall approach is quite elegant, as it treats each quoted part as a unit, and
clearly indicates what is allowed at any point in the match. Nothing can be
matched by more than one part of the regex, so there’s no ambiguity, and hence
no worry about unintended matches “sneaking in,” as with some earlier examples.

Notice that ! + " rather than !+ " is used within the quotes of the first two alternatives?
A quoted string may be empty (e.g., ‘alt=""’), so ! + " is used within each pair of
quotes to reflect that. But don’t use ! + " or !+ " in the third alternative, as the ![ˆ’">] "

is already directly subject to a quantifier via the wrapping !(˙˙˙)+ ". Adding another
quantifier, yielding an effective !([ˆ’">]+)+ ", could cause a very rude surprise that
I don’t expect you to understand at this point; it’s discussed in great detail in the
next chapter (+ 226).

One thought about efficiency when used with an NFA engine: since we don’t use
the text captured by the parentheses, we can change them to non-capturing paren-
theses (+ 136). And since there is indeed no ambiguity among the alternatives, if it
tur ns out that the final !>" can’t match when it’s tried, there’s no benefit going back
and trying the remaining alternatives. Where one of the alternatives matched
befor e, no other alternative can match now from the same spot. So, it’s okay to
thr ow away any saved states, and doing so affords a faster failure when no match
can be had. This can be done by using !(?>˙˙˙)" atomic grouping instead of the
non-capturing parentheses (or a possessive star to quantify whichever parentheses
ar e used).

Matching an HTML Link
Let’s say that now we want to match sets of URL and link text from a document,
such as pulling the marked items from:

˙˙˙O’Reilly And Associates˙˙˙

Because the contents of an <A> tag can be fairly complex, I would approach this
task in two parts. The first is to pluck out the “guts” of the <A> tag, along with the
link text, and then pluck the URL itself from those <A> guts.

A simplistic approach to the first part is a case-insensitive, dot-matches-all applica-
tion of !<a\b([ˆ>]+)>(.+?) ", which features the lazy star quantifier. This puts
the <A> guts into $1 and the link text into $2. Of course, as earlier, instead of
![ˆ>]+ " I should use what we developed in the previous section. Having said that,
I’ll continue with this simpler version, for the sake of keeping that part of the
regex shorter and cleaner for the discussion.

Once we have the <A> guts in a string, we can inspect them with a separate regex.
In them, the URL is the value for the href=value attribute. HTML allows spaces on
either side of the equal sign, and the value can be quoted or not, as described in

HTML-Related Examples 201

29 April 2003 09:22

202 Chapter 5: Practical Regex Techniques

the previous section. A solution is shown as part of this Perl snippet to report on
links in the variable $Html:

Note: the regex in the while(...) is overly simplistic — see text for discussion

while ($Html =˜ m{<a\b([ˆ>]+)>(.+?)}ig)
{

my $Guts = $1; # Save results from the match above, to their own . . .
my $Link = $2; # . . . named variables, for clarity below.

if ($Guts =˜ m{
\b HREF # "href" attribute
\s+ = \s+ # "=" may have whitespace on either side
(?: # Value is˙˙˙

"([ˆ"]+)" # double-quoted string,
; # or˙˙˙

’([ˆ’]+)’ # single-quoted string,
; # or˙˙˙

([ˆ’">\s]+) # "other stuff"
) #

}xi)
{
my $Url = $+; # Gives the highest-numbered actually-filled $1, $2, etc.
print "$Url with link text: $Link\n";

}
}

Some notes about this:

• This time, I added parentheses to each value-matching alternative, to capture
the exact value matched.

• Because I’m using some of the parentheses to capture, I’ve used non-captur-
ing parentheses where I don’t need to capture, both for clarity and efficiency.

• This time, the “other stuff” component excludes whitespace in addition to
quotes and ‘>’, as whitespace separates “attribute=value” pairs.

• This time, I do use !+ " in the “other stuff” alternative, as it’s needed to capture
the whole href value. Does this cause the same “rude surprise” as if we used
!+ " in the “other stuff” alternative on page 200? No, because there’s no outer
quantifier that directly influences the class being repeated. Again, this is cov-
er ed in detail in the next chapter.

Depending on the text, the actual URL may end up in $1, $2, or $3. The others
will be empty or undefined. Perl happens to support a special variable $+ which is
the value of the highest-numbered $1, $2, etc. that actually captured text. In this
case, that’s exactly what we want as our URL.

Using $+ is convenient in Perl, but other languages offer other ways to isolate the
captur ed URL. Nor mal pr ogramming constructs can always be used to inspect the
captur ed gr oups, using the one that has a value. If supported, named capturing
(+ 137) is perfect for this, as shown in the VB.NET example on page 204. (It’s
good that .NET of fers named capture, because its $+ is broken + 418.)

29 April 2003 09:22

Examining an HT TP URL

Now that we’ve got a URL, let’s see if it’s an http URL, and if so, pluck it apart into
its hostname and path components. Since we know we have something intended
to be a URL, our task is made much simpler than if we had to identify a URL fr om
among random text. That much more dif ficult task is investigated a bit later in this
chapter.

So, given a URL, we mer ely need to be able to recognize the parts. The hostname
is everything after !ˆhttp:// " but before the next slash (if there is another slash),
and the path is everything else: !ˆhttp://([ˆ/]+)(/.+)?$ "

Actually, a URL may have an optional port number between the hostname and the
path, with a leading colon: !ˆhttp://([ˆ/:]+)(:(\d+))?(/.+)?$ "

Her e’s a Perl snippet to report about a URL:

if ($url =˜ m{ˆhttp://([ˆ/:]+)(:(\d+))?(/.+)?$}i)
{

my $host = $1;
my $port = $3 ;; 80; # Use $3 if it exists; otherwise default to 80.
my $path = $4 ;; "/"; # Use $4 if it exists; otherwise default to "/".
print "host: $host\n";
print "port: $port\n";
print "path: $path\n";

} else {
print "not an http url\n";

}

Validating a Hostname
In the previous example, we used ![ˆ/:]+ " to match a hostname. Yet, in Chapter 2
(+ 76), we used the more complex ![-a-z]+(\.[-a-z]+)+\.(com;edu;˙˙˙;info) ".
Why the differ ence in complexity for finding ostensibly the same thing?

Well, even though both are used to “match a hostname,” they’r e used quite differ-
ently. It’s one thing to pluck out something from a known quantity (e.g., from
something you know to be a URL), but it’s quite another to accurately and unam-
biguously pluck out that same type of something from among random text. Specif-
ically, in the previous example, we made the assumption that what comes after the
‘http://’ is a hostname, so the use of ![ˆ/:]+ " mer ely to fetch it is reasonable. But
in the Chapter 2 example, we use a regex to find a hostname in random text, so it
must be much more specific.

Now, for a third angle on matching a hostname, we can consider validating host-
names with regular expressions. In this case, we want to check whether a string is
a well-for med, syntactically correct hostname. Officially, a hostname is made up of
dot-separated parts, where each part can have ASCII letters, digits, and hyphens,
but a part can’t begin or end with a hyphen. Thus, one part can be matched with

HTML-Related Examples 203

29 April 2003 09:22

204 Chapter 5: Practical Regex Techniques

Link Checker in VB.NET
This Program reports on links within the HTML in the variable Html:

Imports System.Text.RegularExpressions
+
+
+

’ Set up the regular expressions we’ll use in the loop
Dim ARRegex as Regex = New Regex(R

"<a\b(?<guts>[ˆ>]+)>(?<Link>.+?)", R
RegexOptions.IgnoreCase)

Dim GutsRegex as Regex = New Regex(R
"\b HREF (?# ’href’ attribute)" & R
"\s+ = \s+ (?# ’=’ with optional whitespace)" & R
"(?: (?# Value is ...)" & R
" ""(?<url>[ˆ""]+)"" (?# double-quoted string,)" & R
" ; (?# or ...)" & R
" ’(?<url>[ˆ’]+)’ (?# single-quoted string,)" & R
" ; (?# or ...)" & R
" (?<url>[ˆ’"">\s]+) (?# ’other stuff’)" & R
") (?#)", R
RegexOptions.IgnoreCase OR RegexOptions.IgnorePatternWhitespace)

’ Now check the ’Html’ Variable . . .
Dim CheckA as Match = ARRegex.Match(Html)

’ For each match within . . .
While CheckA.Success

’ We matched an <a> tag, so now check for the URL.
Dim UrlCheck as Match = R

GutsRegex.Match(CheckA.Groups("guts").Value)
If UrlCheck.Success

’ We’ve got a match, so have a URL/link pair
Console.WriteLine("Url " & UrlCheck.Groups("url").Value & R

" WITH LINK " & CheckA.Groups("Link").Value)
End If
CheckA = CheckA.NextMatch

End While

A few things to notice:

• VB.NET programs using regular expressions requir e that first Imports
line to tell the compiler what object libraries to use.

• I’ve used !(?#˙˙˙)" style comments because it’s inconvenient to get a new-
line into a VB.NET string, and normal ‘#’ comments carry on until the
next newline or the end of the string (which means that the first one
would make the entire rest of the regex a comment). To use normal !#˙˙˙ "
comments, add &chr(10) at the end of each line (+ 414).

• Each double quote in the regex requir es ‘""’ in the literal string (+ 102).

• Named capturing is used in both expressions, allowing the more descrip-
tive Groups("url") instead of Groups(1), Groups(2), etc.

29 April 2003 09:22

a case-insensitive application of ![a-z0-9]<[a-z0-9][-a-z0-9]+[a-z0-9] ". The
final suffix part (‘com’, ‘edu’, ‘uk’, etc.) has a limited set of possibilities, mentioned
in passing in the Chapter 2 example. Using that here, we’re left with the following
regex to match a syntactically valid hostname:

ˆ
(?i) # apply this regex in a case-insensitive manner.
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]+[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;name;museum;coop;aero;[a-z][a-z])
$

Something matching this regex isn’t necessarily valid quite yet, as there’s a length
limitation: individual parts may be no longer than 63 characters. That means that
the ![-a-z0-9]+" in there should be ![-a-z0-9]{0,61}".

Ther e’s one final change, just to be official. Officially, a name consisting of only
one of the suffixes (e.g., ‘com’, ‘edu’, etc.) is also syntactically valid. Current prac-
tice seems to be that these “names” don’t actually have a computer answer to
them, but that doesn’t always seem to be the case for the two-letter country suf-
fixes. For example, Anguilla’s top-level domain ‘ai’ has a web server: http://ai/
shows a page. A few others like this that I’ve seen include cc, co, dk, mm, ph, tj,
tv, and tw.

So, if you wish to allow for these special cases, change the central !(?:˙˙˙)+ " to
!(?:˙˙˙), ". These changes leave us with:

ˆ
(?i) # apply this regex in a case-insensitive manner.
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]{0,61}[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;name;museum;coop;aero;[a-z][a-z])
$

This now works just dandy to validate a string containing a hostname. Since this is
the most specific of the three hostname-related regexes we’ve developed, you
might think that if you remove the anchors, it could be better than the regex we
came up with earlier for plucking out hostnames from random text. That’s not the
case. This regex matches any two-letter word, which is why the less-specific regex
fr om Chapter 2 is better in practice. But, it still might not be good enough for
some purposes, as the next section shows.

Plucking Out a URL in the Real World
Working for Yahoo! Finance, I write programs that process incoming financial
news and data feeds. News articles are usually provided to us in raw text, and my
pr ograms convert them to HTML for a pleasing presentation. (Read financial news

HTML-Related Examples 205

29 April 2003 09:22

206 Chapter 5: Practical Regex Techniques

at http://finance.yahoo.com and see how I’ve done.) It’s often a daunting task
due to the random “formatting” (or lack thereof) of the data we receive, and
because it’s much more dif ficult to recognize things like hostnames and URLs in
raw text than it is to validate them once you’ve got them. The previous section
alluded to this; in this section, I’ll show you code we actually use at Yahoo! to
solve the issues we’ve faced.

We look for several types of URLs to pluck from the text — mailto, http, https,
and ftp URLs. If we find ‘http://’ in the text, we’re pretty certain that’s the start
of a URL, so we can use something simple like !http://[-\w]+(\.\w[-\w]+)+ " to
match up through the hostname part. We’r e using the knowledge of the text (raw
English text provided as ASCII) to realize that it’s probably okay to use !-\w " instead
of ![-a-z0-9] ". !\w " also matches an underscore, and in some systems also matches
the whole of Unicode letters, but we know that neither of these really matter to us
in this particular situation.

However, often, a URL is given without the http:// or mailto: pr efix, such as:

˙˙˙visit us at www.oreilly.com or mail to orders@oreilly.com.

In this case, we need to be much more car eful. What we use is quite similar to the
regex from the previous section, but it differs in a few ways:

(?i: [a-z0-9] (?:[-a-z0-9]+[a-z0-9])? \.)+ # sub domains
Now ending .com, etc. For these, we requir e lower case
(?-i: com\b

; edu\b
; biz\b
; org\b
; gov\b
; in(?:t;fo)\b # .int or .info
; mil\b
; net\b
; name\b
; museum\b
; coop\b
; aero\b
; [a-z][a-z]\b # two-letter country codes

)

In this regex, !(?i:˙˙˙)" and !(?-i:˙˙˙)" ar e used to explicitly enable and disable case-
insensitivity for specific parts of the regex (+ 134). We want to match a URL like
‘www.OReilly.com’, but not a stock symbol like ‘NT.TO’ (the stock symbol for
Nortel Networks on the Tor onto Stock Exchange — remember, we process financial
news and data, which has a lot of stock symbols). Officially, the ending part of a
URL (e.g., ‘.com’) may be upper case, but we simply won’t recognize those. That’s
the balance we’ve struck among matching what we want (pretty much every URL

we’r e likely to see), not matching what we don’t want (stock symbols), and sim-
plicity. I suppose we could move the !(?-i:˙˙˙)" to wrap only the country codes
part, but in practice, we just don’t get uppercased URLs, so we’ve left this as it is.

29 April 2003 09:22

Her e’s a framework for finding URLs in raw text, into which we can insert the
subexpr ession to match a hostname:

\b
Match the leading part (proto://hostname, or just hostname)
(

ftp://, http://, or https:// leading part
(ftp;https?)://[-\w]+(\.\w[-\w]+)+

;
or, try to find a hostname with our more specific sub-expression
full-hostname-regex

)

Allow an optional port number
(: \d+)?

The rest of the URL is optional, and begins with / . . .
(

/ path-part
)?

I haven’t talked yet about the path part of the regex, which comes after the host-
name (e.g., the underlined part of http://www.oreilly.com/catalog/regex/).
The path part turns out to be the most difficult text to match properly, as it
requir es some guessing to do a good job. As discussed in Chapter 2, what often
comes after a URL in the text is also allowed as part of a URL. For example, with

Read his comments at http://www.oreilly.com/askRtim/index.html. He ...

we can look and realize that the period after ‘index.html’ is English punctuation
and should not be considered part of the URL, yet the period within ‘index.html’
is part of the URL.

Although it’s easy for us humans to differ entiate between the two, it’s quite diffi-
cult for a program, so we’ve got to come up with some heuristics that get the job
done as best we can. The approach taken with the Chapter 2 example is to use
negative lookbehind to ensure that a URL can’t end with sentence-ending punctua-
tion characters. What we’ve been using at Yahoo! Finance was originally written
befor e negative lookbehind was available, and so is more complex than the Chap-
ter 2 approach, but in the end it has the same effect. It’s shown in the listing on
the next page. The approach taken for the path part is differ ent in a number of
respects, and the comparison with the Chapter 2 example on page 75 should be
inter esting. In particular, the Java version of this regex in the sidebar on page 209
pr ovides some insight as to how it was built.

In practice, I doubt I’d actually write out a full monster like this, but instead I’d
build up a “library” of regular expressions and use them as needed. A simple
example of this is shown with the use of $HostnameRegex on page 76, and also
in the sidebar on page 209.

HTML-Related Examples 207

29 April 2003 09:22

208 Chapter 5: Practical Regex Techniques

Regex to pluck a URL fr om financial news

\b
Match the leading part (proto://hostname, or just hostname)
(

ftp://, http://, or https:// leading part
(ftp;https?)://[-\w]+(\.\w[-\w]+)+

;
or, try to find a hostname with our more specific sub-expression
(?i: [a-z0-9] (?:[-a-z0-9]+[a-z0-9])? \.)+ # sub domains
Now ending .com, etc. For these, requir e lower case
(?-i: com\b

; edu\b
; biz\b
; gov\b
; in(?:t;fo)\b # .int or .info
; mil\b
; net\b
; org\b
; [a-z][a-z]\b # two-letter country codes

)
)

Allow an optional port number
(: \d+)?

The rest of the URL is optional, and begins with / . . .
(

/
The rest are heuristics for what seems to work well
[ˆ.!,?;"’<>()\[\]{}\s\x7F-\xFF]+
(?:

[.!,?]+ [ˆ.!,?;"’<>()\[\]{}\s\x7F-\xFF]+
)+

)?

Extended Examples
The next few examples illustrate some important techniques about regular expres-
sions. The discussions are longer, and show more of the thought processes and
mistaken paths that eventually lead to a working conclusion.

Keeping in Sync with Your Data
Let’s look at a lengthy example that might seem a bit contrived, but which illus-
trates some excellent points on why it’s important to keep in sync with what
you’r e trying to match (and provides some methods to do so).

Let’s say that your data is a series of five-digit US postal codes (ZIP codes) that are
run together, and that you need to retrieve all that begin with, say, 44. Her e is a
sample line of data, with the codes we want to retrieve in bold:

03824531449411615213441829503544272752010217443235

29 April 2003 09:22

Building Up a Regex Through Var iables in Java
String SubDomain = "(?i:[a-z0-9];[a-z0-9][-a-z0-9]+[a-z0-9])";
String TopDomains = "(?x-i:com\\b \n" +

" ;edu\\b \n" +
" ;biz\\b \n" +
" ;in(?:t;fo)\\b \n" +
" ;mil\\b \n" +
" ;net\\b \n" +
" ;org\\b \n" +
" ;[a-z][a-z]\\b \n" + // country codes
") \n";

String Hostname = "(?:" + SubDomain + "\\.)+" + TopDomains;

String NOTRIN = ";\"’<>()\\[\\]\\{\\}\\s\\x7F-\\xFF";
String NOTREND = "!.,?";
String ANYWHERE = "[ˆ" + NOTRIN + NOTREND + "]";
String EMBEDDED = "[" + NOTREND + "]";
String UrlPath = "/"+ANYWHERE + "+("+EMBEDDED+"+"+ANYWHERE+"+)+";

String Url =
"(?x: \n"+
" \\b \n"+
" ## match the hostname part \n"+
" (\n"+
" (?: ftp ; http s?): // [-\\w]+(\\.\\w[-\\w]+)+ \n"+
" ; \n"+
" " + Hostname + " \n"+
") \n"+
" # allow optional port \n"+
" (?: \\d+)? \n"+
" \n"+
" # rest of url is optional, and begins with / \n"+
" (?: " + UrlPath + ")? \n"+
")";

// Now convert string we’ve built up into a real regex object
Pattern UrlRegex = Pattern.compile(Url);
// Now ready to apply to raw text to find urls . . .

+
+
+

As a starting point, consider that !\d\d\d\d\d " can be used repeatedly to match all
the ZIP codes. In Perl, this is as simple as @zips = m/\d\d\d\d\d/g; to create a
list with one ZIP code per element. (To keep these examples less cluttered, they
assume the text to be matched is in Perl’s default target variable $Q + 79.) With
other languages, it’s usually a simple matter to call the regex “find” method in a
loop. I’d like to concentrate on the regular expression rather than that mechanics
particular to each language, so will continue to use Perl to show the examples.

Back to !\d\d\d\d\d ". Her e’s a point whose importance will soon become appar-
ent: the regex never fails until the entire list has been parsed—ther e ar e absolutely

Extended Examples 209

29 April 2003 09:22

210 Chapter 5: Practical Regex Techniques

no bump-and-retries by the transmission. (I’m assuming we’ll have only proper
data, an assumption that is very situation specific.)

So, it should be apparent that changing !\d\d\d\d\d " to !44\d\d\d " in an attempt
to find only ZIP codes starting with 44 is silly — once a match attempt fails, the
transmission bumps along one character, thus putting the match for the !44˙˙˙ " out of
sync with the start of each ZIP code. Using !44\d\d\d " incorr ectly finds a match at
‘˙˙˙5314494116˙˙˙’.

You could, of course, put a caret or !\A " at the head of the regex, but they allow a
target ZIP code to match only if it’s the first in the string. We need to keep the
regex engine in sync manually by writing our regex to pass over undesired ZIP

codes as needed. The key here is that it must pass over full ZIP codes, not single
characters as with the automatic bump-along.

Keeping the match in sync with expectations

The following are a few ways to pass over undesired ZIP codes. Inserting them
befor e what we want (!(44\d\d\d) ") achieves the desired effect. Non-capturing
!(?:˙˙˙)" par entheses ar e used to match undesired ZIP codes, effectively allowing us
to pass them over on the way toward matching a desired ZIP code within the $1

capturing parentheses:

!(?:[ˆ4]\d\d\d\d<\d[ˆ4]\d\d\d)+˙˙˙ "

This brute-force method actively skips ZIP codes that start with something
other than 44. (Well, it’s probably better to use ![1235-9] " instead of ![ˆ4] ",
but as I said earlier, I am assuming properly formatted data.) By the way,
we can’t use !(?:[ˆ4][ˆ4]\d\d\d)+ ", as it does not match (and thus does
not pass over) undesired ZIP codes like 43210.

!(?:(?!44)\d\d\d\d\d)+˙˙˙ "

This method, which uses negative lookahead, actively skips ZIP codes that
do not start with 44. This English description sounds virtually identical to
the previous one, but when render ed into a regular expression looks quite
dif ferent. Compare the two descriptions and related expressions. In this
case, a desired ZIP code (beginning with 44) causes !(?!44) " to fail, thus
causing the skipping to stop.

!(?:\d\d\d\d\d)+?˙˙˙ "

This method uses a lazy quantifier to skip ZIP codes only when needed. We
use it before a subexpr ession matching what we do want, so that if that
subexpr ession fails, this one matches a ZIP. It’s the laziness of !(˙˙˙)+? " that
allows this to happen. Because of the lazy quantifier, !(?:\d\d\d\d\d) " is
not even attempted until whatever follows has failed. The star assures that it
is repeatedly attempted until whatever follows finally does match, thus
ef fectively skipping only what we want to skip.

29 April 2003 09:22

Combining this last method with !(44\d\d\d) " gives us

@zips = m/(?:\d\d\d\d\d)+?(44\d\d\d)/g;

and picks out the desired ‘44xxx ’ codes, actively skipping undesired ones that
intervene. (In this “@array = m/˙˙˙/g” situation, Perl fills the array with what’s
matched by capturing parentheses during each match attempt + 311.) This regex
can work repeatedly on the string because we know each match always leaves the
“curr ent match position” at the start of the next ZIP code, thereby priming the next
match to start at the beginning of a ZIP code as the regex expects.

Maintaining sync after a non-match as well

Have we really ensur ed that the regex is always applied only at the start of a ZIP

code? No! We have manually skipped intervening undesir ed ZIP codes, but once
ther e ar e no more desir ed ones, the regex finally fails. As always, the bump-along-
and-r etry happens, thereby starting the match from a position within a ZIP code —
something our approach relies on never happening.

Let’s look at our sample data again:

03824531449411615213441829503544272752010217443235

Her e, the matched codes are bold (the third of which is undesired), the codes we
actively skipped are underlined, and characters skipped via bump-along-and-retry
ar e marked. After the match of 44272, no mor e target codes are able to be
matched, so the subsequent attempt fails. Does the whole match attempt end? Of
course not. The transmission bumps along to apply the regex at the next character,
putting us out of sync with the real ZIP codes. After the fourth such bump-along,
the regex skips 10217 as it matches 44323, reporting it falsely as a desired code.

Any of our three expressions work smoothly so long as they are applied at the
start of a ZIP code, but the transmission’s bump-along defeats them. This can be
solved by ensuring that the transmission doesn’t bump along, or that a bump-
along doesn’t cause problems.

One way to ensure that the transmission doesn’t bump along, at least for the first
two methods, is to make !(44\d\d\d\) " gr eedily optional by appending !? ". This
plays off the knowledge that the prepended !(?:(?!44)\d\d\d\d\d)+˙˙˙ " or
!(?:[ˆ4]\d\d\d\d<\d[ˆ4]\d\d\d)+˙˙˙ " finish only when at a desired code, or
when there are no mor e codes (which is why it can’t be used for the third, non-
gr eedy method.) Thus, !(44\d\d\d)? " matches the desired ZIP code if it’s there, but
doesn’t force a backtrack if it’s not.

Ther e ar e some problems with this solution. One is that because we can now have
a regex match even when we don’t have a target ZIP code, the handling code must
be a bit more complex. However, to its benefit, it is fast, since it doesn’t involve
much backtracking, nor any bump-alongs by the transmission.

Extended Examples 211

29 April 2003 09:22

212 Chapter 5: Practical Regex Techniques

Maintaining sync with \G

A mor e general approach is to simply prepend !\G " (+ 128) to any of the three
methods’ expressions. Because we crafted each to explicitly end on a ZIP code
boundary, we’re assur ed that any subsequent match that has had no intervening
bump-along begins on that same ZIP boundary. And if there has been a bump-
along, the leading !\G " fails immediately, because with most flavors, it’s successful
only when there’s been no intervening bump-along. (This is not true for Ruby and
other flavors whose !\G " means “start of the current match” instead of “end of the
pr evious match” + 129.)

So, using the second expression, we end up with

@zips = m/\G(?:(?!44)\d\d\d\d\d)+(44\d\d\d\d)/g;

without the need for any special after-match checking.

This example in perspective

I’ll be the first to admit that this example is contrived, but nevertheless, it shows a
number of valuable lessons about how to keep a regex in sync with the data. Still,
wer e I really to need to do this in real life, I would probably not try to solve it
completely with regular expressions. I would simply use !\d\d\d\d\d " to grab
each ZIP code, then discard it if it doesn’t begin with ‘44’. In Perl, this looks like:

@zips = (); # Ensur e the array is empty

while (m/(\d\d\d\d\d)/g) {
$zip = $1;
if (substr($zip, 0, 2) eq "44") {

push @zips, $zip;
}

}

Also, see the sidebar on page 130 for a particularly interesting use of !\G ", although
one available at the time of this writing only in Perl.

Parsing CSV Files
As anyone who’s ever tried to parse a CSV (Comma Separated Values) file can tell
you, it can be a bit tricky. The biggest problem is that it seems every program that
pr oduces a CSV file has a differ ent idea of just what the format should be. In this
section, I’ll start off with methods to parse the kind of CSV file that Microsoft Excel
generates, and we’ll move from there to look at some other format permutations.†

Luckily, the Microsoft format is one of the simplest. The values, separated by com-
mas, are either “raw” (just sitting there between the commas), or within double

† The final code for processing the Microsoft style CSV files is presented in Chapter 6 (+ 271) after the
ef ficiency issues discussed in that chapter are taken into consideration.

29 April 2003 09:22

quotes (and within the double quotes, a double quote itself is repr esented by a
pair of double quotes in a row).

Her e’s an example:

Ten Thousand,10000, 2710 ,,"10,000","It’s ""10 Grand"", baby",10K

This row repr esents seven fields:

Ten Thousand
10000
2710

an empty field

10,000
It’s "10 Grand", baby
10K

So, to parse out the fields from a line, we need an expression to cover each of two
field types. The non-quoted ones are easy — they contain anything except commas
and quotes, so they are matched by ![ˆ",]+ " .

A double-quoted field can contain commas, spaces, and in fact anything except a
double quote. It can also contain the two quotes in a row that repr esent one quote
in the final value. So, a double-quoted field is matched by any number of ![ˆ"];"""

between !"˙˙˙"", which gives us !"(?:[ˆ"]<"")+"". (Actually, for efficiency, I can use
atomic grouping, !(?>˙˙˙)" instead of !(?:˙˙˙)", but I’ll leave that discussion until the
next chapter; + 259.)

Putting this all together results in ![ˆ",]+<"(?:[ˆ"];"")+"" to match a single
field. That might be getting a bit hard to read, so I’ll rewrite it in a free-spacing
mode (+ 110):

Either some non-quote/non-comma text . . .
[ˆ",]+
. . . or . . .

;
. . . a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
(?: [ˆ"] ; "")+

" # field’s closing quote

Now, to use this in practice, we can apply it repeatedly to a string containing a
CSV row, but if we want to actually do anything productive with the results of the
match, we should know which alternative matched. If it’s the double-quoted field,
we need to remove the outer quotes and replace internal paired double quotes
with one double quote to yield the original data.

I can think of two approaches to this. One is to just look at the text matched and
see whether the first character is a double quote. If so, we know that we must
strip the first and last characters (the double quotes) and replace any internal ‘""’

Extended Examples 213

29 April 2003 09:22

214 Chapter 5: Practical Regex Techniques

by ‘"’. That’s simple enough, but it’s even simpler if we are clever with capturing
par entheses. If we put capturing parentheses around each of the subexpressions
that match actual field data, we can inspect them after the match to see which
gr oup has a value:

Either some non-quote/non-comma text . . .
([ˆ",]+)
. . . or . . .

;
. .. a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
((?: [ˆ"] ; "")+)
" # field’s closing quote

Now, if we see that the first group captured, we can just use the value as is. If the
second group captured, we merely need to replace any ‘""’ with ‘"’ and we can
use the value.

I’ll show the example now in Perl, and a bit later (after we flush out some bugs) in
Java and VB.NET. Her e’s the snippet in Perl, assuming our line is in $line and has
had any newline removed from the end (we don’t want the newline to be part of
the last field!):

while ($line =˜ m{
Either some non-quote/non-comma text . . .
([ˆ",]+)
. . . or . . .

;
. . . a double-quoted field ("" allowed inside)
" # field’s opening quote
((?: [ˆ"] ; "")+)
" # field’s closing quote

}gx)
{

if (defined $1) {
$field = $1;

} else {
$field = $2;
$field =˜ s/""/"/g;

}
print "[$field]"; # print the field, for debugging
Can work with $field now . . .

}

Applying this against our test data, the output is:

[Ten Thousand][10000][2710][10,000][It’s "10 Grand", baby][10K]

This looks mostly good, but unfortunately doesn’t give us anything for that empty
fourth field. If the program’s “work with $field” is to save the field value to an
array, once we’re all done, we’d want access to the fifth element of the array to
yield the fifth field (“10,000”). That won’t work if we don’t fill an element of the
array with an empty value for each empty field.

29 April 2003 09:22

The first idea that might come to mind for matching an empty field is to change
![ˆ",]+ " to ![ˆ",], ". Well, that may seem obvious, but does it really work?

Let’s test it. Here’s the output:
[Ten Thousand][][10000][][2710][][][][10,000][][][It’s "10 Grand", . . .

Oops, we somehow got a bunch of extra fields! Well, in retr ospect, we shouldn’t
be surprised. By using !(˙˙˙)+ " to match a field, we don’t actually requir e anything
to match. That works to our advantage when we have an empty field, but consider
after having matched the first field, the next application of the regex starts at
‘Ten Thousand,10000˙˙˙’. If nothing in the regex can match that raw comma (as is
the case), yet an empty match is considered successful, the empty match will
indeed be successful at that point. In fact, it could be successful an infinite num-
ber of times at that point if the regex engine doesn’t realize, as modern ones do,
that it’s in such a situation and force a bump-along so that two zero-width matches
don’t happen in a row (+ 129). That’s why there’s one empty match between each
valid match, and one more empty match before each quoted field (and although
not shown, there’s an empty match at the end).

Distr usting the bump-along

The problem here stems from us having relied on the transmission’s bump-along
to get us past the separating commas. To solve it, we need to take that control into
our own hands. Two approaches come to mind:

1. We could try to match the commas ourselves. If we take this approach, we
must be sure to match a comma as part of matching a regular field, using it to
“pace ourselves” through the string.

2. We could check to be sure that each match start is consistent with locations
that we know can start a field. A field starts either at the beginning of the
line, or after a comma.

Perhaps even better, we can combine the two. Starting with the first approach
(matching the commas ourselves), we can simply requir e a comma before each
field except the first. Alternatively, we can requir e a comma after each field except
the last. We can do this by prepending !ˆ;," or appending !$;," to our regex, with
appr opriate par entheses to control the scope. Let’s try prepending, which gives us:

(?: ̂<,)
(?:

Either some non-quote/non-comma text....
([ˆ",]+)

˙˙˙ or˙˙˙

<
˙˙˙ a double-quoted field (inside, paired double quotes are allowed)
" # field’s opening quote
((?: [ˆ"] ; "")+)

" # field’s closing quote
)

Extended Examples 215

29 April 2003 09:22

216 Chapter 5: Practical Regex Techniques

This really sounds like it should work, but plugging it into our test program, the
result is disappointing:

[Ten Thousand][10000][2710][][][000][][baby][10K]

Remember, we’r e expecting:
[Ten Thousand][10000][2710][][10,000][It’s "10 Grand", baby][10K]

Why didn’t this one work? It seems that the double-quoted fields didn’t come out
right, so the problem must be with the part that matches a double-quoted field,
right? No, the problem is before that. Perhaps the moral from page 176 can help:
when more than one alternative can potentially match from the same point, care
must be taken when selecting the order of the alternatives. Since the first alternative,
![ˆ",]+ ", requir es nothing to be successful, the second alternative never gets a
chance to match unless forced by something that must match later in the regex.
Our regex doesn’t have anything after these alternatives, so as it’s written, the sec-
ond alternative is never even reached. Doh!

Wow, you’ve really got to keep your wits about you. Okay, let’s swap the alterna-
tives and try again:

(?: ̂;,)
(?: # Now, match either a double-quoted field (inside, paired double quotes are allowed) . . .

" # (double-quoted field’s opening quote)
((?: [ˆ"] ; "")+)

" # (double-quoted field’s closing quote)
;
. . . or, some non-quote/non-comma text . . .

([ˆ",]+)
)

Now, it works! Well, at least for our test data. Could it fail with other data? This
section is named “Distrusting the bump-along,” and while nothing takes the place
of some thought backed up with good testing, we can use !\G " to ensure that each
match begins exactly at the point that the previous match ended. We believe that
should be true already because of how we’ve constructed and apply our regex. If
we start out the regex with !\G ", we disallow any match after the engine’s transmis-
sion is forced to bump along. We hope it will never matter, but doing so may
make an error more appar ent. Had we done this with our previously-failing regex
that had given us

[Ten Thousand][10000][2710][][][000][][baby][10K]

we would have gotten
[Ten Thousand][10000][2710][][]

instead. This perhaps would have made the error more appar ent, had we missed it
the first time.

29 April 2003 09:22

CSV Processing in Java
Her e’s the CSV example with Sun’s java.util.regex. This is designed to be
clear and simple—a mor e ef ficient version is given in Chapter 8 (+ 386).

import java.util.regex.+;
+
+
+

Pattern fieldRegex = Pattern.compile(
"\\G(?:ˆ;,) \n"+
"(?: \n"+
" # Either a double-quoted field ... \n"+
" \" # field’s opening quote \n"+
" ((?: [ˆ\"]++ ; \"\")++) \n"+
" \" # field’s closing quote \n"+
" # ... or ... \n"+
" ; \n"+
" # ... some non-quote/non-comma text ... \n"+
" ([ˆ\",]+) \n"+
") \n", Pattern.COMMENTS);

Pattern quotesRegex = Pattern.compile("\"\"");
+
+
+

// Given the string in ’line’, find all the fields . . .

Matcher m = fieldRegex.matcher(line);
while (m.find())
{

String field;
if (m.group(1) != null) {

field = quotesRegex.matcher(m.group(1)).replaceAll("\"");
} else {

field = m.group(2);
}
// We can now work with the field . . .
System.out.println("[" + field + "]");

}

Another approach. The beginning of this section noted two approaches to
ensuring we stay properly aligned with the fields. The other is to be sure that a
match begins only where a field is allowed. On the surface, this is similar to
pr epending !ˆ;,", except using lookbehind as with !(?<=ˆ<,)".

Unfortunately, as the section in Chapter 3 explains (+ 132), even if lookbehind is
supported, variable-length lookbehind sometimes isn’t, so this approach may not
work. If the variable length is the issue, we could replace !(?<=ˆ<,)" with
!(?:ˆ<(?<=,))", but this seems overly complex considering that we already have
the first approach working. Also, it reverts to relying on the transmission’s bump-
along to bypass the commas, so if we’ve made a mistake elsewhere, it could allow
a match to begin at a location like ‘˙˙˙"10,000"˙˙˙’. All in all, it just seems safer to
use the first approach.

Extended Examples 217

29 April 2003 09:22

218 Chapter 5: Practical Regex Techniques

However, we can use a twist on this approach—requiring a match to end befor e a
comma (or before the end of the line). Adding !(?=$;,)" to the end of our regex
adds yet another assurance that it won’t match where we don’t want it to. In prac-
tice, would I do add this? Well, frankly, I feel pretty comfortable with what we
came up with before, so I’d probably not add it in this exact situation, but it’s a
good technique to have on hand when you need it.

One change for the sake of eff icienc y

Although I don’t concentrate on efficiency until the next chapter, I’d like to make
one efficiency-r elated change now, for systems that support atomic grouping
(+ 137). If supported, I’d change the part that matches the values of double-
quoted fields from !(?: [ˆ"];"")+ " to !(?>[ˆ"]+;"")+ ". The VB.NET example in
the sidebar below shows this.

CSV Processing in VB.NET
Imports System.Text.RegularExpressions

+
+
+

Dim FieldRegex as Regex = New Regex(R
"(?:ˆ;,) " & R
"(?: " & R
" (?# Either a doublequoted field ...) " & R
" "" (?# field’s opening quote) " & R
" ((?> [ˆ""]+ ; """")+) " & R
" "" (?# field’s closing quote) " & R
" (?# ... or ...) " & R
" ; " & R
" (?# ... some non-quote/non-comma text ...) " & R
" ([ˆ"",]+) " & R
")", RegexOptions.IgnorePatternWhitespace)

Dim QuotesRegex as Regex = New Regex(""" "" ") ’A string with two double quotes

+
+
+

Dim FieldMatch as Match = FieldRegex.Match(Line)
While FieldMatch.Success

Dim Field as String
If FieldMatch.Groups(1).Success

Field = QuotesRegex.Replace(FieldMatch.Groups(1).Value, """")
Else

Field = FieldMatch.Groups(2).Value
End If

Console.WriteLine("[" & Field & "]")
’ Can now work with ’Field’.˙˙˙

FieldMatch = FieldMatch.NextMatch
End While

29 April 2003 09:22

If possessive quantifiers (+ 140) are supported, as they are with Sun’s Java regex
package, they can be used instead. The sidebar with the Java CSV code shows this.

The reasoning behind these changes is discussed in the next chapter, and eventu-
ally we end up with a particularly efficient version, shown on page 271.

Other CSV formats

Micr osoft’s CSV for mat is popular because it’s Microsoft’s CSV for mat, but it’s not
necessarily what other programs use. Here are some twists I’ve seen:

• Using another character, such as ‘;’ or a tab, as the separator (which makes
one wonder why the format is still called “comma-separated values”).

• Allowing spaces after the separators, but not counting them as part of the
value.

• Using backslashes to escape quotes (e.g., using ‘\"’ rather than ‘""’ to include
a quote within the value). This usually means that a backslash is allowed (and
ignor ed) befor e any character.

These changes are easily accommodated. Do the first by replacing each comma in
the regex with the desired separator; the second by adding !\s+ " after the first sep-
arator, e.g., starting out with !(?: ̂;,\s,)".

For the third, we can use what we developed earlier (+ 198), replacing ![ˆ"]+;"""

with ![ˆ"\\]+;\\. ". Of course, we’d also have to change the subsequent
s/""/"/g to the more general s/\\(.)/$1/g, or our target language’s equivalent.

Extended Examples 219

29 April 2003 09:22

29 April 2003 09:22

