
7
Perl

Perl has been featured prominently in this book, and with good reason. It is popu-
lar, extr emely rich with regular expressions, freely and readily obtainable, easily
appr oachable by the beginner, and available for a remarkably wide variety of plat-
for ms, including pretty much all flavors of Windows, Unix, and the Mac.

Some of Perl’s programming constructs superficially resemble those of C or other
traditional programming languages, but the resemblance stops there. The way you
wield Perl to solve a problem — The Perl Way — is differ ent fr om traditional lan-
guages. The overall layout of a Perl program often uses traditional structured and
object-oriented concepts, but data processing often relies heavily on regular
expr essions. In fact, I believe it is safe to say that regular expressions play a key
role in virtually all Perl programs. This includes everything from huge 100,000-line
systems, right down to simple one-liners, like

% perl -pi -e ’s{([-+]?\d+(\.\d+)?)F\b}{sprintf "%.0fC",($1-32)+5/9}eg’ +.txt

which goes through +.txt files and replaces Fahrenheit values with Celsius ones
(r eminiscent of the first example from Chapter 2).

In This Chapter
This chapter looks at everything regex about Perl,† including details of its regex
flavor and the operators that put them to use. This chapter presents the regex-r ele-
vant details from the ground up, but I assume that you have at least a basic famil-
iarity with Perl. (If you’ve read Chapter 2, you’re alr eady familiar enough to at
least start using this chapter.) I’ll often use, in passing, concepts that have not yet
been examined in detail, and I won’t dwell much on non-regex aspects of the lan-
guage. It might be a good idea to keep the Perl documentation handy, or perhaps
O’Reilly’s Pr ogramming Perl.

† This book covers features of Perl as of Version 5.8.

283

29 April 2003 20:47

284 Chapter 7: Perl

Perhaps more important than your current knowledge of Perl is your desir e to
understand more. This chapter is not light reading by any measure. Because it’s
not my aim to teach Perl from scratch, I am afforded a luxury that general books
about Perl do not have: I don’t have to omit important details in favor of weaving
one coherent story that progr esses unbr oken thr ough the whole chapter. Some of
the issues are complex, and the details thick; don’t be worried if you can’t take it
all in at once. I recommend first reading the chapter through to get the overall pic-
tur e, and retur ning in the future to use it as a refer ence as needed.

To help guide your way, here’s a quick rundown of how this chapter is organized:

• “Perl’s Regex Flavor” (+ 286) looks at the rich set of metacharacters supported
by Perl regular expressions, along with additional features afforded to raw
regex literals.

• “Regex Related Perlisms” (+ 293) looks at some aspects of Perl that are of par-
ticular interest when using regular expressions. Dynamic scoping and expr es-
sion context ar e cover ed in detail, with a strong bent toward explaining their
relationship with regular expressions.

• Regular expressions are not useful without a way to apply them, so the follow-
ing sections provide all the details to Perl’s sometimes magical regex controls:

“The qr/˙˙˙/ Operator and Regex Objects” (+ 303)
“The Match Operator” (+ 306)
“The Substitution Operator” (+ 318)
“The Split Operator” (+ 321)

• “Fun with Perl Enhancements” (+ 326) goes over a few Perl-only enhance-
ments to Perl’s regular-expr ession repertoir e, including the ability to execute
arbitrary Perl code during the application of a regular expression.

• “Perl Efficiency Issues” (+ 347) delves into an area close to every Perl pro-
grammer’s heart. Perl uses a Traditional NFA match engine, so you can feel
fr ee to start using all the techniques from Chapter 6 right away. There are, of
course, Perl-specific issues that can greatly affect in what way, and how
quickly, Perl applies your regexes. We’ll look at them here.

Perl in Earlier Chapters
Perl is touched on throughout most of this book:

• Chapter 2 contains an introduction to Perl, with many regex examples.

• Chapter 3 contains a section on Perl history (+ 88), and touches on numerous
regex-r elated issues that apply to Perl, such as character-encoding issues
(including Unicode + 105), match modes (+ 109), and a long overview of
metacharacters (+ 112).

29 April 2003 20:47

• Chapter 4 is a key chapter that demystifies the Traditional NFA match engine
found in Perl. Chapter 4 is extremely important to Perl users.

• Chapter 5 contains many examples, discussed in the light of Chapter 4. Many
of the examples are in Perl, but even those not presented in Perl apply to Perl.

• Chapter 6 is an important chapter to the user of Perl interested in efficiency.

In the interest of clarity for those not familiar with Perl, I often simplified Perl
examples in these earlier chapters, writing in as much of a self-documenting
pseudo-code style as possible. In this chapter, I’ll try to present examples in a
mor e Perlish style of Perl.

Regular Expressions as a Language
Component
An attractive feature of Perl is that regex support is so deftly built in as part of the
language. Rather than providing stand-alone functions for applying regular expres-
sions, Perl provides regular-expr ession operators that are meshed well with the
rich set of other operators and constructs that make up the Perl language.

With as much regex-wielding power as Perl has, one might think that it’s over-
flowing with differ ent operators and such, but actually, Perl provides only four
regex-r elated operators, and a small handful of related items, shown in Table 7-1.

Table 7-1: Overview of Perl’s Regex-Related Items

Regex-Related Operator s Modifier s Modify How . . .

m/regex/mods (+ 306) /x /o regex is interpreted (+ 292, 348)

s/regex/replacement/mods (+ 318) /s /m /i engine considers target text (+ 292)

qr/regex/mods (+ 303) /g /c /e other (+ 311, 315, 319)

split(˙˙˙) (+ 321) After-Match Var iables (+ 299)

Related Pragmas $1, $2, etc. captured text

use charnames ’:full’; (+ 290) $ˆN $+ latest/highest filled $1, $2, . . .

use overload; (+ 341) @- @+ arrays of indices into target

use re ’eval’; (+ 337) $‘ $& $’
- -

text before, of, and after match

use re ’debug’; (+ 361) (best to avoid—see “Perl Efficiency Issues” + 356)

Related Functions Related Var iables

lc lcfirst uc ucfirst (+ 290) $R default search target (+ 308)

pos (+ 313) quotemeta (+ 290) $ˆR embedded-code result (+ 302)

reset (+ 308) study (+ 359)

Regular Expressions as a Language Component 285

29 April 2003 20:47

286 Chapter 7: Perl

Perl is extremely powerful, but all that power in such a small set of operators can
be a dual-edged sword.

Perl’s Greatest Strength
The richness of variety and options among Perl’s operators and functions is per-
haps its greatest feature. They can change their behavior depending on the context
in which they’re used, often doing just what the author naturally intends in each
dif fering situation. In fact, O’Reilly’s Pr ogramming Perl goes so far as to boldly
state “In general, Perl operators do exactly what you want....” The regex match
operator m/regex/, for example, offers an amazing variety of differ ent functionality
depending upon where, how, and with which modifiers it is used.

Perl’s Greatest Weakness
This concentrated richness in expressive power is also one of Perl’s least-attractive
featur es. Ther e ar e innumerable special cases, conditions, and contexts that seem
to change out from under you without warning when you make a subtle change
in your code—you’ve just hit another special case you weren’t aware of.† The Pr o-
gramming Perl quote in the previous paragraph continues “...unless you want
consistency.” Certainly, when it comes to computer science, there is a certain
appr eciation to boring, consistent, dependable interfaces. Perl’s power can be a
devastating weapon in the hands of a skilled user, but it sometimes seems with
Perl, you become skilled by repeatedly shooting yourself in the foot.

Perl’s Regex Flavor
Table 7-2 on the facing page summarizes Perl’s regex flavor. It used to be that Perl
had many metacharacters that no other system supported, but over the years,
other systems have adopted many of Perl’s innovations. These common features
ar e cover ed by the overview in Chapter 3, but there are a few Perl-specific items
discussed later in this chapter. (Table 7-2 has refer ences to where each item is
discussed.)

The following notes supplement the table:

• !\b " matches a backspace only in class; otherwise, it’s a word boundary.

• Octal escapes accept two- and three-digit numbers.

• The !\xnum " hex escape accepts two-digit numbers (and one-digit numbers,
but with a warning if warnings are tur ned on). The !\x{num}" syntax accepts a
hexadecimal number of any length.

† That they’re innumerable doesn’t stop this chapter from trying to cover them all!

29 April 2003 20:47

Table 7-2: Overview of Perl’s Regular-Expr ession Flavor

Character Shorthands

+ 114 (c) \a \b \e \f \n \r \t \octal \xhex \x{hex} \cchar

Character Classes and Class-Like Constr ucts

+ 117 Classes: [˙˙˙] [ˆ˙˙˙] (may contain POSIX-like [:alpha:] notation)

+ 118 Any character except newline: dot (with /s, any character at all)

+ 328 Forced match of single byte (can be dangerous): \C

+ 125 Unicode combining sequence: \X

+ 119 (c) Class shorthands: \w \d \s \W \D \S

+ 119 (c) Unicode properties, scripts, and blocks: \p{Pr op} \P{Pr op}

Anchor s and other Zero-Width Tests

+ 127 Start of line/string: ˆ \A

+ 127 End of line/string: $ \z \Z

+ 315 End of previous match: \G

+ 131 Word boundary: \b \B

+ 132 Lookar ound: (?=˙˙˙) (?!˙˙˙) (?<=˙˙˙) (?<!˙˙˙)

Comments and Mode Modifiers

+ 133 Mode modifiers: (?mods-mods) Modifiers allowed: x s m i (+ 292)

+ 134 Mode-modified spans: (?mods-mods:˙˙˙)

+ 134 Comments: (?# ˙˙˙) # ˙˙˙ (fr om ‘#’ until newline, or end of regex)

Grouping, Capturing, Conditional, and Control

+ 135 Capturing parentheses: (˙˙˙) \1 \2 . . .

+ 136 Gr ouping-only par entheses: (?:˙˙˙)

+ 137 Atomic grouping: (?>˙˙˙)

+ 138 Alter nation: <

+ 139 Gr eedy quantifiers: , + ? {n} {n,} {x,y}

+ 140 Lazy quantifiers: ,? +? ?? {n}? {n,}? {x,y}?

+ 138 Conditional: (?if then <else) – “if ” can be embedded code, lookaround, or (num)

+ 327 Embedded code: (?{˙˙˙})

+ 327 Dynamic regex: (??{˙˙˙})

In Regex Literals Only

+ 289 (c) Variable interpolation: $name @name

+ 290 (c) Fold next character’s case: \l \u

+ 290 (c) Case-folding span: \U \L . . . \E

+ 290 (c) Literal-text span: \Q . . . \E

+ 290 (c) Named Unicode character: \N{name} – optional; see page 290

(c) – may be used within a character class

Perl’s Regex Flavor 287

29 April 2003 20:47

288 Chapter 7: Perl

• Perl’s Unicode support is for Unicode Version 3.2.

• dot tr eats Unicode combining characters as separate characters (+ 107). Also
see !\X " (+ 125).

• !\w ", !\d ", and !\s " fully support Unicode.

• Perl’s !\s " does not match an ASCII vertical tab character (+ 114).

• Unicode Scripts are supported. Script and property names may have the ‘Is’
pr efix, but they don’t requir e it (+ 123). Block names may have the ‘In’ pre-
fix, but requir e it only when a block name conflicts with a script name.

The !\p{L&} " pseudo-pr operty is supported, as well as !\p{Any} ", !\p{All} ",
!\p{Assigned} ", and !\p{Unassigned} ".

The long property names like !\p{Letter} " ar e supported. Names may have a
space, underscore, or nothing between the word parts of a name (for example
!\p{LowercaseRLetter} " may also be written as !\p{LowercaseLetter} " or
!\p{Lowercase Letter} ".) For consistency, I recommend using the long
names as shown in the table on page 121.

• !\p{ˆ˙˙˙}" is the same as !\P{˙˙˙}".

• Word boundaries fully support Unicode.

• Lookar ound may have capturing parentheses.

• Lookbehind is limited to subexpressions that always match fixed-width text.

• The /x modifier recognizes only ASCII whitespace. The /m modifier affects
only newlines, and not the full list of Unicode line terminators.

Not all metacharacters are created equal. Some “regex metacharacters” are not
even supported by the regex engine, but by the prepr ocessing Perl gives to regex
literals.

Regex Operands and Regex Literals
The final items in Table 7-2 are marked “regex literals only.” A regex literal is the
“regex ” part of m/rege x/, and while casual conversation refers to that as “the regu-
lar expression,” the part between the ‘/’ delimiters is actually parsed using its own
unique rules. In Perl jargon, a regex literal is treated as a “regex-awar e double-
quoted string,” and it’s the result of that processing that’s passed to the regex
engine. This regex-literal processing offers special functionality in building the reg-
ular expression.

For example, a regex literal offers variable interpolation. If the variable $num con-
tains 20, the code m/:.{$num}:/ pr oduces the regex !:.{20} : ". This way, you can

29 April 2003 20:47

build regular expressions on the fly. Another service given to regex literals is auto-
matic case folding, as with \U˙˙˙\E to ensure letters are uppercased. As a silly
example, m/abc\Uxyz\E/ cr eates the regex !abcXYZ ". This example is silly because
if someone wanted !abcXYZ " they could just type m/abcXYZ/ dir ectly, but its value
becomes apparent when combined with variable interpolation: if the variable $tag

contains the string “title”, the code m{ </\U$tag\E>} pr oduces !</TITLE>".

What’s the opposite of a regex literal? You can also use a string (or any expres-
sion) as a regex operand. For example:

$MatchField = "ˆSubject:"; # Nor mal string assignment

+
+
+

if ($text =˜ $MatchField) {
+
+
+

When $MatchField is used as an operand of =˜, its contents are interpr eted as a
regular expression. That “interpretation” is as a plain vanilla regex, so variable
interpolation and things like \Q˙˙˙\E ar e not supported as they would be for a
regex literal.

Her e’s something interesting: if you replace

$text =˜ $MatchField

with

$text =˜ m/$MatchField/

the result is exactly the same. In this case, there’s a regex literal, but it’s composed
of just one thing — the interpolation of the variable $MatchField. The contents of
a variable interpolated by a regex literal are not tr eated as a regex literal, and so
things like \U˙˙˙\E and $var within the value interpolated are not recognized.
(Details on exactly how regex literals are processed are cover ed on page 292.)

If used more than once during the execution of a program, there are important
ef ficiency issues with regex operands that are raw strings, or that use variable
interpolation. These are discussed starting on page 348.

Features supported by regex literals

The following features are offer ed by regex literals:

• Variable Interpolation Variable refer ences beginning with $ and @ ar e inter-
polated into the value to use for the regex. Those beginning with $ insert a
simple scalar value. Those beginning with @ insert an array or array slice into
the value, with elements separated by spaces (actually, by the contents of the
$" variable, which defaults to a space).

In Perl, ‘%’ intr oduces a hash variable, but inserting a hash into a string doesn’t
make much sense, so interpolation via % is not supported.

Perl’s Regex Flavor 289

29 April 2003 20:47

290 Chapter 7: Perl

• Named Unicode Character s If you have “use charnames ’:full’;” in the
pr ogram, you can refer to Unicode characters by name using the \N{name}

sequence. For instance, \N{LATIN SMALL LETTER SHARP S} matches “ß”. The list of
Unicode characters that Perl understands can be found in Perl’s unicor e dir ec-
tory, in the file UnicodeData.txt. This snippet shows the file’s location:

use Config;
print "$Config{privlib}/unicore/UnicodeData.txt\n";

It’s easy to forget “use charnames ’:full’;”, or the colon before ‘full’, but
if you do, \N{˙˙˙} won’t work. Also, \N{˙˙˙} doesn’t work if you use regex
overloading, described later in this list.

• Case-Folding Prefix The special sequences \l and \u cause the character that
follows to be made lowercase and uppercase, respectively. This is usually
used just before variable interpolation to force the case on the first character
br ought in from the variable. For example, if the variable $title contains
“mr.”, the code m/˙˙˙\u$title˙˙˙/ cr eates the regex ! ˙˙˙Mr.˙˙˙ ". The same func-
tionality is provided by the Perl functions lcfirst() and ucfirst().

• Case-Folding Span The special sequences \L and \U cause characters that fol-
low to be made lowercase and uppercase, respectively, until the end of the
regex literal, or until the special sequence \E. For example, with the same
$title as before, the code m/˙˙˙\U$title\E˙˙˙/ cr eates the regex ! ˙˙˙MR.˙˙˙ ". The
same functionality is provided by the Perl functions lc() and uc().

You can combine a case-folding prefix with a case-folding span: the code
m/˙˙˙\L \u $title\E˙˙˙/ ensur es ! ˙˙˙Mr.˙˙˙ " regardless of the original capitalization.

• Literal-Text Span The sequence \Q “quotes” regex metacharacters (i.e., puts a
backslash in front of them) until the end of the string, or until a \E sequence.
It quotes regex metacharacters, but not quote regex-literal items like variable
interpolation, \U, and, of course, the \E itself. Oddly, it also does not quote
backslashes that are part of an unknown sequence, such as in \F or \H. Even
with \Q˙˙˙\E, such sequences still produce “unrecognized escape” warnings.

In practice, these restrictions are not that big a drawback, as \Q˙˙˙\E is nor-
mally used to quote interpolated text, where it properly quotes all metachar-
acters. For example, if $title contains “Mr.”, the code m/˙˙˙\Q$title\E˙˙˙/

cr eates the regex ! ˙˙˙Mr\.˙˙˙", which is what you’d want if you wanted to match
the text in $title, rather than the regex in $title.

This is particularly useful if you want to incorporate user input into a regex.
For example, m/\Q$UserInput\E/i does a case-insensitive search for the
characters (as a string, not a regex) in $UserInput.

The \Q˙˙˙\E functionality is also provided by the Perl function quotemeta().

29 April 2003 20:47

• Overloading You can pre-pr ocess the literal parts of a regex literal in any
way you like with overloading. It’s an interesting concept, but one with severe
limitations as currently implemented. Overloading is covered in detail, starting
on page 341.

Picking your own regex delimiter s

One of the most bizarre (yet, most useful) aspects of Perl’s syntax is that you can
pick your own delimiters for regex literals. The traditional delimiter is a forward
slash, as with m/˙˙˙/, s/˙˙˙/˙˙˙/, and qr/˙˙˙/, but you can actually pick any non-
alphanumeric, non-whitespace character. Some commonly used examples include:

m!˙˙˙! m{˙˙˙}

m,˙˙˙, m<˙˙˙>

s;˙˙˙;˙˙˙; m[˙˙˙]

qr#˙˙˙# m(˙˙˙)

The four on the right are among the special-case delimiters:

• The four examples on the right side of the list above have differ ent opening
and closing delimiters, and may be nested (that is, may contain copies of the
delimiters so long as the opens and closes pair up properly). Because paren-
theses and square brackets are so prevalent in regular expressions, m(˙˙˙) and
m[˙˙˙] ar e pr obably not as appealing as the others. In particular, with the /x

modifier, something such as the following becomes possible:

m{
regex # comments
here # here

}x;

If one of these pairs is used for the regex part of a substitute, another pair (the
same as the first, or, if you like, differ ent) is used for the replacement string.
Examples include:

s{˙˙˙}{˙˙˙}

s{˙˙˙}!˙˙˙!

s<˙˙˙>(˙˙˙)

s[˙˙˙]/˙˙˙/

If this is done, you can put whitespace and comments between the two pairs
of delimiters. More on the substitution operator’s replacement string operand
can be found on page 319.

• For the match operator only, a question mark as a delimiter has a little-used
special meaning (suppress additional matches) discussed in the section on the
match operator (+ 308).

Perl’s Regex Flavor 291

29 April 2003 20:47

292 Chapter 7: Perl

• As mentioned on page 288, a regex literal is parsed like a “regex-awar e dou-
ble-quoted string.” If a single quote is used as the delimiter, however, those
featur es ar e inhibited. With m’˙˙˙’, variables are not interpolated, and the con-
structs that modify text on the fly (e.g., \Q˙˙˙\E) do not work, nor does the
\N{˙˙˙} construct. m’˙˙˙’ might be convenient for a regex that has many @, to
save having to escape them.

For the match operator only, the m may be omitted if the delimiter is a slash or a
question mark. That is,

$text =˜ m/˙˙˙/;
$text =˜ /˙˙˙/;

ar e the same. My prefer ence is to always explicitly use the m.

How Regex Literals Are Par sed
For the most part, one “just uses” the regex-literal features just discussed, without
the need to understand the exact details of how Perl converts them to a raw regu-
lar expression. Perl is very good at being intuitive in this respect, but there are
times when a more detailed understanding can help. The following lists the order
in which processing appears to happen:

1. The closing delimiter is found, and the modifiers (such as /i, etc.) are read.
The rest of the processing then knows if it’s in /x mode.

2. Variables are interpolated.

3. If regex overloading is in effect, each part of the literal is given to the over-
load routine for processing. Parts are separated by interpolated variables; the
values interpolated are not made available to overloading.

If regex overloading is not in effect, \N{˙˙˙} sequences are processed.

4. Case-folding constructs (e.g., \Q˙˙˙\E) are applied.

5. The result is presented to the regex engine.

This describes how the processing appears to the programmer, but in reality, the
inter nal pr ocessing done by Perl is quite complicated. Even step #2 must under-
stand the regular-expr ession metacharacters, so as not to, for example, treat the
underlined portion of !this$;that$ " as a variable refer ence.

Regex Modifier s
Perl’s regex operators allow regex modifiers, placed after the closing delimiter of
the regex literal (like the i in m/˙˙˙/i, s/˙˙˙/˙˙˙/i, or qr/˙˙˙/i). There are five core
modifiers that all regex operators support, shown in Table 7-3.

The first four, described in Chapter 3, can also be used within a regex itself as a
mode-modifier (+ 133) or mode-modified span (+ 134). When used both within

29 April 2003 20:47

Table 7-3: The Core Modifiers Available to All Regex Operators

/i +109 Ignore letter case during match

/x +110 Free-spacing and comments regex mode

/s +110 Dot-matches-all match mode

/m +111 Enhanced line anchor match mode

/o +348 Compile only once

the regex, and as part of one of the match operators, the in-regex versions take
pr ecedence for the part of the regex they control. (Another way to look at it is that
once a modifier has been applied to some part of a regex, nothing can “unmodify”
that part of a regex.)

The fifth core modifier, /o, has mostly to do with efficiency. It is discussed later in
this chapter, starting on page 348.

If you need more than one modifier, group the letters together and place them in
any order after the closing delimiter, whatever it might be.† Keep in mind that the
slash is not part of the modifier — you can write m/<title>/i as m<<title><i, or
perhaps m{<title>}i, or even m<<title>>i. Nevertheless, when discussing
modifiers, it’s common to always write them with a slash, e.g., “the /i modifier.”

Regex-Related Perlisms
A variety of general Perl concepts pertain to our study of regular expressions. The
next few sections discuss:

• Context An important concept in Perl is that many functions and operators
respond to the context they’r e used in. For example, Perl expects a scalar
value as the conditional of a while loop, but a list of values as the arguments
to a print statement. Since Perl allows expressions to “respond” to the con-
text in which they’re in, identical expressions in each case might produce
wildly differ ent results.

• Dynamic Scope Most programming languages support the concept of local
and global variables, but Perl provides an additional twist with something
known as dynamic scoping. Dynamic scoping temporarily “protects” a global
variable by saving a copy of its value and automatically restoring it later. It’s
an intriguing concept that’s important for us because it affects $1 and other
match-r elated variables.

† Because modifiers can appear in any order, a large portion of a programmer’s time is spent adjusting
the order to achieve maximum cuteness. For example, learn/by/osmosis is valid code (assuming
you have a function called learn). The osmosis ar e the modifiers. Repeating modifiers is allowed,
but meaningless (except for the substitution-operator’s /e modifier, discussed later).

Regex-Related Perlisms 293

29 April 2003 20:47

294 Chapter 7: Perl

Expression Context
The notion of context is important throughout Perl, and in particular, to the match
operator. An expr ession might find itself in one of three contexts, list, scalar, or
void, indicating the type of value expected from the expression. Not surprisingly, a
list context is one where a list of values is expected of an expression. A scalar
context is one where a single value is expected. These two are very common and
of great interest to our use of regular expressions. Void context is one in which no
value is expected.

Consider the two assignments:

$s = expression one;
@a = expression two;

Because $s is a simple scalar variable (it holds a single value, not a list), it expects
a simple scalar value, so the first expression, whatever it may be, finds itself in a
scalar context. Similarly, because @a is an array variable and expects a list of val-
ues, the second expression finds itself in a list context. Even though the two
expr essions might be exactly the same, they might retur n completely differ ent val-
ues, and cause completely differ ent side effects while they’re at it. Exactly what
happens depends on each expression.

For example, the localtime function, if used in a list context, retur ns a list of val-
ues repr esenting the current year, month, date, hour, etc. But if used in a scalar
context, it retur ns a textual version of the current time along the lines of ‘Mon Jan
20 22:05:15 2003’.

As another example, an I/O operator such as <MYDATA> retur ns the next line of the
file in a scalar context, but retur ns a list of all (remaining) lines in a list context.

Like localtime and the I/O operator, many Perl constructs respond to their con-
text. The regex operators do as well — the match operator m/˙˙˙/, for example,
sometimes retur ns a simple true/false value, and sometimes a list of certain match
results. All the details are found later in this chapter.

Contor ting an expression

Not all expressions are natively context-sensitive, so Perl has rules about what
happens when a general expression is used in a context that doesn’t exactly match
the type of value the expression normally retur ns. To make the square peg fit into
a round hole, Perl “contorts” the value to make it fit. If a scalar value is retur ned in
a list context, Perl makes a list containing the single value on the fly. Thus,
@a = 42 is the same as @a = (42).

29 April 2003 20:47

On the other hand, there’s no general rule for converting a list to a scalar. If a lit-
eral list is given, such as with

$var = ($this, &is, 0xA, ’list’);

the comma-operator retur ns the last element, ’list’, for $var. If an array is
given, as with $var = @array, the length of the array is retur ned.

Some words used to describe how other languages deal with this issue are cast,
pr omote, coer ce, and convert, but I feel they are a bit too consistent (boring?) to
describe Perl’s attitude in this respect, so I use “contort.”

Dynamic Scope and Regex Match Effects
Perl’s two types of storage (global and private variables) and its concept of
dynamic scoping ar e important to understand in their own right, but are of partic-
ular interest to our study of regular expressions because of how after-match infor-
mation is made available to the rest of the program. The next sections describe
these concepts, and their relation to regular expressions.

Global and private var iables

On a broad scale, Perl offers two types of variables: global and private. Private
variables are declar ed using my(˙˙˙). Global variables are not declared, but just pop
into existence when you use them. Global variables are always visible from any-
wher e and everywhere within the program, while private variables are visible, lex-
ically, only to the end of their enclosing block. That is, the only Perl code that can
dir ectly access the private variable is the code that falls between the my declaration
and the end of the block of code that encloses the my.

The use of global variables is normally discouraged, except for special cases, such
as the myriad of special variables like $1, $R, and @ARGV. Regular user variables
ar e global unless declared with my, even if they might “look” private. Perl allows
the names of global variables to be partitioned into groups called packages, but
the variables are still global. A global variable $Debug within the package
Acme::Widget has a fully qualified name of $Acme::Widget::Debug, but no
matter how it’s refer enced, it’s still the same global variable. If you use strict;,
all (non-special) globals must either be refer enced via fully-qualified names, or via
a name declared with our (our declar es a name, not a new variable — see the Perl
documentation for details).

Dynamically scoped values

Dynamic scoping is an interesting concept that few programming languages pro-
vide. We’ll see the relevance to regular expressions soon, but in a nutshell, you
can have Perl save a copy of the value of a global variable that you intend to

Regex-Related Perlisms 295

29 April 2003 20:47

296 Chapter 7: Perl

modify within a block, and restor e the original copy automatically at the time
when the block ends. Saving a copy is called cr eating a new dynamic scope, or
localizing.

One reason that you might want to do this is to temporarily update some kind of
global state that’s maintained in a global variable. Let’s say that you’re using a
package, Acme::Widget, and it provides a debugging flag via the global variable
$Acme::Widget::Debug. You can temporarily ensure that debugging is turned on
with code like:

+
+
+

{
local($Acme::Widget::Debug) = 1; # Ensur e it’s turned on
work with Acme::Widget while debugging is on

+
+
+

}
$Acme::Widget::Debug is now back to whatever it had been before

+
+
+

It’s that extremely ill-named function local that creates a new dynamic scope. Let
me say up front that the call to local does not create a new variable. local is an
action, not a declaration. Given a global variable, local does three things:

1. Saves an internal copy of the variable’s value

2. Copies a new value into the variable (either undef, or a value assigned to the
local)

3. Slates the variable to have its original value restor ed when execution runs off
the end of the block enclosing the local

This means that “local” refers only to how long any changes to the variable will
last. The localized value lasts as long as the enclosing block is executing. Even if a
subr outine is called from within that block, the localized value is seen. (After all,
the variable is still a global variable.) The only differ ence fr om a non-localized
global variable is that when execution of the enclosing block finally ends, the pre-
vious value is automatically restor ed.

An automatic save and restor e of a global variable’s value is pretty much all there
is to local. For all the misunderstanding that has accompanied local, it’s no
mor e complex than the snippet on the right of Table 7-4 illustrates.

As a matter of convenience, you can assign a value to local($SomeVar), which is
exactly the same as assigning to $SomeVar in place of the undef assignment. Also,
the parentheses can be omitted to force a scalar context.

As a practical example, consider having to call a function in a poorly written
library that generates a lot of “Use of uninitialized value” warnings. You use Perl’s
-w option, as all good Perl programmers should, but the library author apparently
didn’t. You are exceedingly annoyed by the warnings, but if you can’t change the

29 April 2003 20:47

Table 7-4: The Meaning of local

Nor mal Perl Equivalent Meaning

{ {

local($SomeVar); # save copy my $TempCopy = $SomeVar;
$SomeVar = undef;

$SomeVar = ’My Value’; $SomeVar = ’My Value’;

•
•
•
•

•
•
•

$SomeVar = $TempCopy;
} #Value automatically restor ed }

library, what can you do short of stop using -w altogether? Well, you could set a
local value of $ˆW, the in-code debugging flag (the variable name ˆW can be
either the two characters, caret and ‘W’, or an actual control-W character):

{
local $ˆW = 0; # Ensur e war nings ar e of f.
UnrulyFunction(˙˙˙);

}
Exiting the block restor es the original value of $ˆW.

The call to local saves an internal copy of the value of the global variable $ˆW,
whatever it might be. Then that same $ˆW receives the new value of zero that we
immediately scribble in. When UnrulyFunction is executing, Perl checks $ˆW and
sees the zero we wrote, so doesn’t issue warnings. When the function retur ns, our
value of zero is still in effect.

So far, everything appears to work just as if local isn’t used. However, when the
block is exited right after the subroutine retur ns, the original value of $ˆW is
restor ed. Your change of the value was local, in time, to the life of the block.
You’d get the same effect by making and restoring a copy yourself, as in Table 7-4,
but local conveniently takes care of it for you.

For completeness, let’s consider what happens if I use my instead of local.† Using
my cr eates a new variable with an initially undefined value. It is visible only within
the lexical block it is declared in (that is, visible only by the code written between
the my and the end of the enclosing block). It does not change, modify, or in any
other way refer to or affect other variables, including any global variable of the
same name that might exist. The newly created variable is not visible elsewhere in
the program, including from within UnrulyFunction. In our example snippet, the
new $ˆW is immediately set to zero but is never again used or refer enced, so it’s
pr etty much a waste of effort. (While executing UnrulyFunction and deciding
whether to issue warnings, Perl checks the unrelated global variable $ˆW.)

† Perl doesn’t allow the use of my with this special variable name, so the comparison is only academic.

Regex-Related Perlisms 297

29 April 2003 20:47

298 Chapter 7: Perl

A better analogy: clear transparencies

A useful analogy for local is that it provides a clear transparency (like used with
an overhead projector) over a variable on which you scribble your own changes.
You (and anyone else that happens to look, such as subroutines and signal han-
dlers) will see the new values. They shadow the previous value until the point in
time that the block is finally exited. At that point, the transparency is automatically
removed, in effect, removing any changes that might have been made since the
local.

This analogy is actually much closer to reality than saying “an internal copy is
made.” Using local doesn’t actually make a copy, but instead puts your new
value earlier in the list of those checked whenever a variable’s value is accessed
(that is, it shadows the original). Exiting a block removes any shadowing values
added since the block started. Values are added manually, with local, but here’s
the whole reason we’ve been looking localization: regex side-ef fect var iables have
their values dynamically scoped automatically.

Regex side effects and dynamic scoping

What does dynamic scoping have to do with regular expressions? A lot. A number
of variables like $& (r efers to the text matched) and $1 (r efers to the text matched
by the first parenthesized subexpression) are automatically set as a side effect of a
successful match. They are discussed in detail in the next section. These variables
have their value dynamically scoped automatically upon entry to every block.

To see the benefit of this design choice, realize that each call to a subroutine
involves starting a new block, which means a new dynamic scope is created for
these variables. Because the values before the block are restor ed when the block
exits (that is, when the subroutine retur ns), the subroutine can’t change the values
that the caller sees.

As an example, consider:

if (m/(˙˙˙)/)
{

DoSomeOtherStuff();
print "the matched text was $1.\n";

}

Because the value of $1 is dynamically scoped automatically upon entering each
block, this code snippet neither cares, nor needs to care, whether the function
DoSomeOtherStuff changes the value of $1 or not. Any changes to $1 by the
function are contained within the block that the function defines, or perhaps
within a sub-block of the function. Therefor e, they can’t affect the value this snip-
pet sees with the print after the function retur ns.

29 April 2003 20:47

The automatic dynamic scoping is helpful even when not so apparent:

if ($result =˜ m/ERROR=(.+)/) {
warn "Hey, tell $Config{perladmin} about $1!\n";

}

The standard library module Config defines an associative array %Config, of
which the member $Config{perladmin} holds the email address of the local
Perlmaster. This code could be very surprising if $1 wer e not automatically
dynamically scoped, because %Config is actually a tied variable. That means any
refer ence to it involves a behind-the-scenes subroutine call, and the subroutine
within Config that fetches the appropriate value when $Config{˙˙˙} is used
invokes a regex match. That match lies between your match and your use of $1,
so if $1 wer e not dynamically scoped, it would be destroyed before you used it.
As it is, any changes in $1 during the $Config{˙˙˙} pr ocessing ar e safely hidden
by dynamic scoping.

Dynamic scoping ver sus lexical scoping

Dynamic scoping provides many rewards if used effectively, but haphazard
dynamic scoping with local can create a maintenance nightmare, as readers of a
pr ogram find it difficult to understand the increasingly complex interactions among
the lexically disperse local, subr outine calls, and refer ences to localized variables.

As I mentioned, the my(˙˙˙) declaration creates a private variable with lexical scope.
A private variable’s lexical scope is the opposite of a global variable’s global
scope, but it has little to do with dynamic scoping (except that you can’t local
the value of a my variable). Remember, local is just an action, while my is both an
action and, importantly, a declaration.

Special Var iables Modified by a Match
A successful match or substitution sets a variety of global, read-only variables that
ar e always automatically dynamically scoped. These values never change if a
match attempt is unsuccessful, and are always set when a match is successful.
When appropriate, they are set to the empty string (a string with no characters in
it), or undefined (a “no value” value, similar to, yet testably distinct from, an
empty string). Table 7-5 shows examples.

In more detail, here are the variables set after a match:

$& A copy of the text successfully matched by the regex. This variable (along
with $‘ and $’, described next) is best avoided for perfor mance reasons.
(See the discussion on page 356.) $& is never undefined after a successful
match, although it can be an empty string.

Regex-Related Perlisms 299

29 April 2003 20:47

300 Chapter 7: Perl

Table 7-5: Example Showing After-Match Special Variables

After the match of

"Pi is 3.14159, roughly" =˜ m/\b(
1
(
2
tasty;fattening)

2
;(

3
\d+(

4
\.\d+)

4
?)

3
)
1
\b/;

the following special variables are given the values shown.

Variable Meaning Value

$‘ Text before match Pi is

$& Text matched 3.14159

$’ Text after match , roughly

$1 Text matched within 1st set of parentheses 3.14159

$2 Text matched within 2nd set of parentheses undef

$3 Text matched within 3rd set of parentheses 3.14159

$4 Text matched within 4th set of parentheses .14159

$+ Text from highest-numbered $1, $2, etc. .14159

$ˆN Text from most recently closed $1, $2, etc. 3.14159

@- Array of match-start indices into target text (6, 6, undef, 6, 7)

@+ Array of match-end indices into target text (13, 13, undef, 13, 13)

$‘ A copy of the target text in front of (to the left of) the match’s start. When
used in conjunction with the /g modifier, you might wish $‘ to be the text
fr om start of the match attempt, but it’s the text from the start of the whole
string, each time. $‘ is never undefined after a successful match.

$’ A copy of the target text after (to the right of) the successfully matched text.
$’ is never undefined after a successful match. After a successful match, the
string "$‘$&$’" is always a copy of the original target text.†

$1, $2, $3, etc.
The text matched by the 1st, 2nd, 3rd, etc., set of capturing parentheses. (Note
that $0 is not included here — it is a copy of the script name and not related
to regular expressions.) These are guaranteed to be undefined if they refer
to a set of parentheses that doesn’t exist in the regex, or to a set that wasn’t
actually involved in the match.

These variables are available after a match, including in the replacement
operand of s/˙˙˙/˙˙˙/. They can also be used within the code parts of an
embedded-code or dynamic-regex construct (+ 327). Otherwise, it makes
little sense to use them within the regex itself. (That’s what !\1 " and friends
ar e for.) See “Using $1 Within a Regex?” on page 303.

The differ ence between !(\w+)" and !(\w)+ " can be seen in how $1 is set.
Both regexes match exactly the same text, but they differ in what

† Actually, if the original target is undefined, but the match successful (unlikely, but possible),
"$‘$&$’" would be an empty string, not undefined. This is the only situation where the two differ.

29 April 2003 20:47

subexpr ession falls within the parentheses. Matching against the string
‘tubby’, the first one results in $1 having the full ‘tubby’, while the latter
one results in it having only ‘y’ : with !(\w)+ ", the plus is outside the paren-
theses, so each iteration causes them to start capturing anew, leaving only
the last character in $1.

Also, note the differ ence between !(x)? " and !(x?) ". With the former, the
par entheses and what they enclose are optional, so $1 would be either ‘x’
or undefined. But with !(x?) ", the parentheses enclose a match — what is
optional are the contents. If the overall regex matches, the contents matches
something, although that something might be the nothingness !x? " allows.
Thus, with !(x?) " the possible values of $1 ar e ‘x’ and an empty string. The
following table shows some examples:

Sample Match Resulting $1 Sample Match Resulting $1

"::" =˜ m/:(A?):/ "::" =˜ m/:(\w+):/empty string empty string

"::" =˜ m/:(A)?:/ undefined "::" =˜ m/:(\w)+:/ undefined

":A:" =˜ m/:(A?):/ A ":Word:" =˜ m/:(\w+):/ Word

":A:" =˜ m/:(A)?:/ A ":Word:" =˜ m/:(\w)+:/ d

When adding parentheses just for capturing, as was done here, the decision
of which to use is dependent only upon the semantics you want. In these
examples, since the added parentheses have no affect on the overall match
(they all match the same text), the only differ ences among them is in the
side effect of how $1 is set.

$+ This is a copy of the highest numbered $1, $2, etc. explicitly set during the
match. This might be useful after something like

$url =˜ m{
href \s+ = \s+ # Match the "href = " part, then the value . . .
(?: "([ˆ"]+)" # a double-quoted value, or . . .

; ’([ˆ’]+)’ # a single-quoted value, or . . .
; ([ˆ’"<>]+)) # an unquoted value.

}ix;

to access the value of the href. Without $+, you would have to check each
of $1, $2, and $3 and use the one that’s not undefined.

If there are no capturing parentheses in the regex (or none are used during
the match), it becomes undefined.

$ˆN A copy of the most-recently-closed $1, $2, etc. explicitly set during the
match (i.e., the $1, $2, etc., associated with the final closing parenthesis). If
ther e ar e no capturing parentheses in the regex (or none used during the
match), it becomes undefined. A good example of its use is given starting
on page 344.

Regex-Related Perlisms 301

29 April 2003 20:47

302 Chapter 7: Perl

@- and @+

These are arrays of starting and ending offsets (string indices) into the target
text. They might be a bit confusing to work with, due to their odd names.
The first element of each refers to the overall match. That is, the first ele-
ment of @-, accessed with $-[0], is the offset from the beginning of the tar-
get string to where the match started. Thus, after

$text = "Version 6 coming soon?";
+
+
+

$text =˜ m/\d+/;

the value of $-[0] is 8, indicating that the match started eight characters
into the target string. (In Perl, indices are counted started at zero.)

The first element of @+, accessed with $+[0], is the offset to the end of the
match. With this example, it contains 9, indicating that the overall match
ended nine characters from the start of the string. So, using them together,
substr($text, $-[0], $+[0] - $-[0]) is the same as $& if $text has not
been modified, but doesn’t have the perfor mance penalty that $& has
(+ 356). Here’s an example showing a simple use of @-:

1 while $line =˜ s/\t/’ ’ x (8 - $-[0] % 8)/e;

Given a line of text, it replaces tabs with the appropriate number of spaces.†

Subsequent elements of each array are the starting and ending offsets for
captur ed gr oups. The pair $-[1] and $+[1] ar e the offsets into the target
text where $1 was taken, $-[2] and $+[2] for $2, and so on.

$ˆR This variable holds the resulting value of the most recently executed
embedded-code construct, except that an embedded-code construct used as
the if of a !(? if then < else)" conditional (+ 138) does not set $ˆR. When used
within a regex (within the code parts of embedded-code and dynamic-regex
constructs; + 327), it is automatically localized to each part of the match, so
values of $ˆR set by code that gets “unmatched” due to backtracking are
pr operly forgotten. Put another way, it has the “most recent” value with
respect to the match path that got the engine to the current location.

When a regex is applied repeatedly with the /g modifier, each iteration sets these
variables afresh. That’s why, for instance, you can use $1 within the replacement
operand of s/˙˙˙/˙˙˙/g and have it repr esent a new slice of text with each match.

† This tab-replacement snippet has the limitation that it works only with “traditional” western text. It
doesn’t produce correct results with wide characters like M, which is one character but takes up two
spaces, nor some Unicode renditions of accented characters like à (+ 107).

29 April 2003 20:47

Using $1 within a regex?

The Perl man page makes a concerted effort to point out that !\1 " is not available
as a backrefer ence outside of a regex. (Use the variable $1 instead.) The variable
$1 refers to a string of static text matched during some previously completed suc-
cessful match. On the other hand, !\1 " is a true regex metacharacter that matches
text similar to that matched within the first parenthesized subexpression at the time
that the regex-dir ected NFA reaches the !\1 ". What it matches might change over the
course of an attempt as the NFA tracks and backtracks in search of a match.

The opposite question is whether $1 and other after-match variables are available
within a regex operand. They are commonly used within the code parts of embed-
ded-code and dynamic-regex constructs (+ 327), but otherwise make little sense
within a regex. A $1 appearing in the “regex part” of a regex operand is treated
exactly like any other variable: its value is interpolated before the match or substi-
tution operation even begins. Thus, as far as the regex is concerned, the value of
$1 has nothing to do with the current match, but rather is left over from some pre-
vious match.

The qr/˙˙˙/ Operator and Regex Objects
Intr oduced briefly in Chapter 2 and Chapter 6 (+ 76; 277), qr/˙˙˙/ is a unary oper-
ator that takes a regex operand and retur ns a regex object. The retur ned object can
then be used as a regex operand of a later match, substitution, or split, or can
be used as a sub-part of a larger regex.

Regex objects are used primarily to encapsulate a regex into a unit that can be
used to build larger expressions, and for efficiency (to gain control over exactly
when a regex is compiled, discussed later).

As described on page 291, you can pick your own delimiters, such as qr{˙˙˙} or
qr!˙˙˙!. It supports the core modifiers /i, /x, /s, /m, and /o.

Building and Using Regex Objects
Consider the following, with expressions adapted from Chapter 2 (+ 76):

my $HostnameRegex = qr/[-a-z0-9]+(?:\.[-a-z0-9]+)+\.(?:com;edu;info)/i;

my $HttpUrl = qr{
http:// $HostnameRegex \b # Hostname
(?:

/ [-a-z0-9R:\@&?=+,.!/˜+’%\$]+ # Optional path
(?<![.,?!]) # Not allowed to end with [.,?!]

)?
}ix;

The qr/˙˙˙/ Operator and Regex Objects 303

29 April 2003 20:47

304 Chapter 7: Perl

The first line encapsulates our simplistic hostname-matching regex into a regular-
expr ession object, and saves it to the variable $HostnameRegex. The next lines
then use that in building a regex object to match an HT TP URL, saved to the vari-
able $HttpUrl. Once constructed, they can be used in a variety of ways, such as

if ($text =˜ $HttpUrl) {
print "There is a URL\n";

}

to merely inspect, or perhaps

while ($text =˜ m/($HttpUrl)/g) {
print "Found URL: $1\n";

}

to find and display all HT TP URLs.

Now, consider changing the definition of $HostnameRegex to this, derived from
Chapter 5 (+ 205):

my $HostnameRegex = qr{
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]{0,61}[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;˙˙˙;aero;[a-z][a-z])
}xi;

This is intended to be used in the same way as our previous version (for example,
it doesn’t have a leading !ˆ " and trailing !$ ", and has no capturing parentheses), so
we’r e fr ee to use it as a drop-in replacement. Doing so gives us a stronger
$HttpUrl.

Match modes (or lack thereof) are ver y sticky

qr/˙˙˙/ supports the core modifiers described on page 292. Once a regex object is
built, the match modes of the regex it repr esents can’t be changed, even if that
regex object is used inside a subsequent m/˙˙˙/ that has its own modifiers. For
example, the following does not work:

my $WordRegex = qr/\b \w+ \b/; # Oops, missing the /x modifier!

+
+
+

if ($text =˜ m/ˆ($WordRegex)/x) {
print "found word at start of text: $1\n";

}

The /x modifiers are used here ostensibly to modify how $WordRegex is applied,
but this does not work because the modifiers (or lack thereof) are locked in by the
qr/˙˙˙/ when $WordRegex is cr eated. So, the appropriate modifiers must be used
at that time.

29 April 2003 20:47

Her e’s a working version of the previous example:

my $WordRegex = qr/\b \w+ \b/x; # This works!

+
+
+

if ($text =˜ m/ˆ($WordRegex)/) {
print "found word at start of text: $1\n";

}

Now, contrast the original snippet with the following:

my $WordRegex = ’\b \w+ \b’; # Nor mal string assignment

+
+
+

if ($text =˜ m/ˆ($WordRegex)/x) {
print "found word at start of text: $1\n";

}

Unlike the original, this one works even though no modifiers are associated with
$WordRegex when it is created. That’s because in this case, $WordRegex is a nor-
mal variable holding a simple string that is interpolated into the m/˙˙˙/ regex literal.
Building up a regex in a string is much less convenient than using regex objects,
for a variety of reasons, including the problem in this case of having to remember
that this $WordRegex must be applied with /x to be useful.

Actually, you can solve that problem even when using strings by putting the regex
into a mode-modified span (+ 134) when creating the string:

my $WordRegex = ’(?x:\b \w+ \b)’; # Nor mal string assignment

+
+
+

if ($text =˜ m/ˆ($WordRegex)/) {
print "found word at start of text: $1\n";

}

In this case, after the m/˙˙˙/ regex literal interpolates the string, the regex engine is
pr esented with !ˆ((?x:\b \w+ \b))", which works the way we want.

In fact, this is what logically happens when a regex object is created, except that a
regex object always explicitly defines the “on” or “off” for each of the /i, /x, /m,
and /s modes. Using qr/\b \w+ \b/x cr eates !(?x-ism:\b \w+ \b)". Notice how
the mode-modified span, !(?x-ism:˙˙˙)", has /x tur ned on, while /i, /s, and /m ar e
tur ned of f. Thus, qr/˙˙˙/ always “locks in” each mode, whether given a modifier
or not.

Viewing Regex Objects
The previous paragraph talks about how regex objects logically wrap their regular
expr ession with mode-modified spans like !(?x-ism:˙˙˙)". You can actually see this
for yourself, because if you use a regex object where Perl expects a string, Perl
kindly gives a textual repr esentation of the regex it repr esents. For example:

% perl -e ’print qr/\b \w+ \b/x, "\n"’
(?x-ism:\b \w+ \b)

The qr/˙˙˙/ Operator and Regex Objects 305

29 April 2003 20:47

306 Chapter 7: Perl

Her e’s what we get when we print the $HttpUrl fr om page 304:

(?ix-sm:
http:// (?ix-sm:
One or more dot-separated parts˙˙˙

(?: [a-z0-9]\. ; [a-z0-9][-a-z0-9]{0,61}[a-z0-9]\.)+
Followed by the final suffix part˙˙˙

(?: com;edu;gov;int;mil;net;org;biz;info;˙˙˙;aero;[a-z][a-z])
) \b # hostname

(?:
/ [-a-z0-9R:\@&?=+,.!/˜+’%\$]+ # Optional path

(?<![.,?!]) # Not allowed to end with [.,?!]
)?

)

The ability to turn a regex object into a string is very useful for debugging.

Using Regex Objects for Efficienc y
One of the main reasons to use regex objects is to gain control, for efficiency rea-
sons, of exactly when Perl compiles a regex to an internal form. The general issue
of regex compilation was discussed briefly in Chapter 6, but the more complex
Perl-r elated issues, including regex objects, are discussed in “Regex Compilation,
the /o Modifier, qr/˙˙˙/, and Efficiency” (+ 348).

The Match Operator
The basic match

$text =˜ m/regex/

is the core of Perl regular-expr ession use. In Perl, a regular-expr ession match is an
operator that takes two operands, a target string operand and a regex operand,
and retur ns a value.

How the match is carried out, and what kind of value is retur ned, depend on the
context the match is used in (+ 294), and other factors. The match operator is
quite flexible — it can be used to test a regular expression against a string, to pluck
data from a string, and even to parse a string part by part in conjunction with
other match operators. While powerful, this flexibility can make mastering it more
complex. Some areas of concern include:

• How to specify the regex operand

• How to specify match modifiers, and what they mean

• How to specify the target string to match against

• A match’s side effects

• The value retur ned by a match

• Outside influences that affect the match

29 April 2003 20:47

The general form of a match is:

StringOperand =˜ RegexOperand

Ther e ar e various shorthand forms, and it’s interesting to note that each part is
optional in one shorthand form or another. We’ll see examples of all forms
thr oughout this section.

Match’s Regex Operand
The regex operand can be a regex literal or a regex object. (Actually, it can be a
string or any arbitrary expression, but there is little benefit to that.) If a regex lit-
eral is used, match modifiers may also be specified.

Using a regex literal

The regex operand is most often a regex literal within m/˙˙˙/ or just /˙˙˙/. The lead-
ing m is optional if the delimiters for the regex literal are forward slashes or ques-
tion marks (delimiters of question marks are special, discussed in a bit). For
consistency, I prefer to always use the m, even when it’s not requir ed. As described
earlier, you can choose your own delimiters if the m is present (+ 291).

When using a regex literal, you can use any of the core modifiers described on
page 292. The match operator also supports two additional modifiers, /g and /c,
discussed in a bit.

Using a regex object

The regex operand can also be a regex object, created with qr/˙˙˙/. For example:

my $regex = qr/regex/;
+
+
+

if ($text =˜ $regex) {
+
+
+

You can use m/˙˙˙/ with a regex object. As a special case, if the only thing within
the “regex literal” is the interpolation of a regex object, it’s exactly the same as
using the regex object alone. This example’s if can be written as:

if ($text =˜ m/$regex/) {
+
+
+

This is convenient because it perhaps looks more familiar, and also allows you to
use the /g modifier with a regex object. (You can use the other modifiers that
m/˙˙˙/ supports as well, but they’re meaningless in this case because they can
never override the modes locked in a regex object + 304.)

The Match Operator 307

29 April 2003 20:47

308 Chapter 7: Perl

The default regex

If no regex is given, such as with m// (or with m/$SomeVar/ wher e the variable
$SomeVar is empty or undefined), Perl reuses the regular expression most recently
used successfully within the enclosing dynamic scope. This used to be useful for
ef ficiency reasons, but is now obsolete with the advent of regex objects (+ 303).

Special match-once ?˙˙˙?

In addition to the special cases for the regex-literal delimiters described earlier, the
match operator treats the question mark as a special delimiter. The use of a ques-
tion mark as the delimiter (as with m?˙˙˙?) enables a rather esoteric feature such
that after the successfully m?˙˙˙? matches once, it cannot match again until the
function reset is called in the same package. Quoting from the Perl Version 1
manual page, this features was “a useful optimization when you only want to see
the first occurrence of something in each of a set of files,” but for whatever reason,
I have never seen it used in modern Perl.

The question mark delimiters are a special case like the forward slash delimiters,
in that the m is optional: ?˙˙˙? by itself is treated as m?˙˙˙?.

Specifying the Match Target Operand
The normal way to indicate “this is the string to search” is using =˜, as with
$text =˜ m/˙˙˙/. Remember that =˜ is not an assignment operator, nor is it a com-
parison operator. It is mer ely a funny-looking way of linking the match operator
with one of its operands. (The notation was adapted from awk.)

Since the whole “ expr =˜ m/˙˙˙/ ” is an expr ession itself, you can use it wherever
an expression is allowed. Some examples (each separated by a wavy line):

$text =˜ m/˙˙˙/; # Just do it, presumably, for the side effects.

if ($text =˜ m/˙˙˙/) {
Do code if match is successful

+
+
+

$result = ($text =˜ m/˙˙˙/); # Set $result to result of match against $text
$result = $text =˜ m/˙˙˙/ ; # Same thing; =˜ has higher precedence than =

$copy = $text; # Copy $text to $copy ...
$copy =˜ m/˙˙˙/; # ... and perfor m match on $copy

($copy = $text) =˜ m/˙˙˙/; # Same thing in one expression

The default target

If the target string is the variable $R, you can omit the “ $Q =˜ ” parts altogether. In
other words, the default target operand is $R.

29 April 2003 20:47

Something like

$text =˜ m/regex/;

means “ Apply regex to the text in $text, ignoring the retur n value but doing the
side effects. ” If you forget the ‘˜’, the resulting

$text = m/regex/;

becomes “Apply regex to the text in $R, do the side effects, and retur n a true or
false value that is then assigned to $text.” In other words, the following are
the same:

$text = m/regex/;
$text = ($R =˜ m/regex/);

Using the default target string can be convenient when combined with other con-
structs that have the same default (as many do). For example, this is a common
idiom:

while (<>)
{

if (m/˙˙˙/) {
+
+
+

} elsif (m/˙˙˙/) {
+
+
+

In general, though, relying on default operands can make your code less
appr oachable by less experienced programmers.

Negating the sense of the match

You can also use !˜ instead of =˜ to logically negate the sense of the retur n value.
(Retur n values and side effects are discussed soon, but with !˜, the retur n value is
always a simple true or false value.) The following are identical:

if ($text !˜ m/˙˙˙/)

if (not $text =˜ m/˙˙˙/)

unless ($text =˜ m/˙˙˙/)

Personally, I prefer the middle form. With any of them, the normal side effects,
such as the setting of $1 and the like, still happen. !˜ is merely a convenience in
an “if this doesn’t match” situation.

Different Uses of the Match Operator
You can always use the match operator as if it retur ns a simple true/false indicat-
ing the success of the match, but there are ways you can get additional informa-
tion about a successful match, and to work in conjunction with other match
operators. How the match operator works depends primarily on the context in
which it’s used (+ 294), and whether the /g modifier has been applied.

The Match Operator 309

29 April 2003 20:47

310 Chapter 7: Perl

Nor mal “does this match?”—scalar context without /g

In a scalar context, such as the test of an if, the match operator retur ns a simple
true or false:

if ($target =˜ m/˙˙˙/) {
. . . processing after successful match . . .

+
+
+

} else {
. . . processing after unsuccessful match . . .

+
+
+

}

You can also assign the result to a scalar for inspection later:

my $success = $target =˜ m/˙˙˙/;
+
+
+

if ($success) {
+
+
+

}

Nor mal “pluck data from a string”—list context, without /g

A list context without /g is the normal way to pluck information from a string. The
retur n value is a list with an element for each set of capturing parentheses in the
regex. A simple example is processing a date of the form 69/8/31, using:

my ($year, $month, $day) = $date =˜ m{ˆ (\d+) / (\d+) / (\d+) $}x;

The three matched numbers are then available in the three variables (and $1, $2,
and $3 as well). There is one element in the retur n-value list for each set of cap-
turing parentheses, or an empty list upon failure.

It is possible for a set of capturing parentheses to not participate in the final suc-
cess of a match. For example, one of the sets in m/(this)<(that)/ is guaranteed
not to be part of the match. Such sets retur n the undefined value undef. If ther e
ar e no sets of capturing parentheses to begin with, a successful list-context match
without /g retur ns the list (1).

A list context can be provided in a number of ways, including assigning the results
to an array, as with:

my @parts = $text =˜ m/ˆ(\d+)-(\d+)-(\d+)$/;

If you’re assigning to just one scalar variable, take care to provide a list context to
the match if you want the captured parts instead of just a Boolean indicating the
success. Compare the following tests:

my ($word) = $text =˜ m/(\w+)/;
my $success = $text =˜ m/(\w+)/;

The parentheses around the variable in the first example cause its my to provide a
list context to the assignment (in this case, to the match). The lack of parentheses

29 April 2003 20:47

in the second example provides a scalar context to the match, so $success

mer ely gets a true/false result.

This example shows a convenient idiom:

if (my ($year, $month, $day) = $date =˜ m{ˆ (\d+) / (\d+) / (\d+) $}x) {
Pr ocess for when we have a match: $year and such are available

} else {
her e if no match . . .

}

The match is in a list context (provided by the “my (˙˙˙) =”), so the list of variables
is assigned their respective $1, $2, etc., if the match is successful. However, once
that’s done, since the whole combination is in the scalar context provided by the
if conditional, Perl must contort the list to a scalar. To do that, it takes the num-
ber of items in the list, which is conveniently zero if the match wasn’t successful,
and non-zero (i.e., true) if it was.

“Pluck all matches”—list context, with the /g modifier

This useful construct retur ns a list of all text matched within capturing parentheses
(or if there are no capturing parentheses, the text matched by the whole expres-
sion), not only for one match, as in the previous section, but for all matches in the
string.

A simple example is the following, to fetch all integers in a string:

my @nums = $text =˜ m/\d+/g;

If $text contains an IP addr ess like ‘64.156.215.240’, @nums then receives four
elements, ‘64’, ‘156’, ‘215’, and ‘240’. Combined with other constructs, here’s an
easy way to turn an IP addr ess into an eight-digit hexadecimal number such as
‘409cd7f0’, which might be convenient for creating compact log files:

my $hexRip = join ’’, map { sprintf("%02x", $R) } $ip =˜ m/\d+/g;

You can convert it back with a similar technique:

my $ip = join ’.’, map { hex($R) } $hexRip =˜ m/../g

As another example, to match all floating-point numbers on a line, you might use:

my @nums = $text =˜ m/\d+(?:\.\d+)?;\.\d+/g;

The use of non-capturing parentheses here is very important, since adding captur-
ing ones changes what is retur ned. Her e’s an example showing how one set of
capturing parentheses can be useful:

my @Tags = $Html =˜ m/<(\w+)/g;

This sets @Tags to the list of HTML tags, in order, found in $Html, assuming it con-
tains no stray ‘<’ characters.

The Match Operator 311

29 April 2003 20:47

312 Chapter 7: Perl

Her e’s an example with multiple sets of capturing parentheses: consider having
the entire text of a Unix mailbox alias file in a single string, where logical lines
look like:

alias Jeff jfriedl@regex.info
alias Perlbug perl5-porters@perl.org
alias Prez president@whitehouse.gov

To pluck an alias and full address from one of the logical lines, you can use
m/ˆalias\s+(\S+)\s+(.+)/m (without /g). In a list context, this retur ns a list of
two elements, such as (’Jeff’, ’jfriedl@regex.info’). Now, to match all
such sets, add /g. This retur ns a list like:

(’Jeff’, ’jfriedl@regex.info’, ’Perlbug’,
’perl5-porters@perl.org’, ’Prez’, ’president@whitehouse.gov’)

If the list happens to fit a key/value pair pattern as in this example, you can actu-
ally assign it directly to an associative array. After running

my %alias = $text =˜ m/ˆalias\s+(\S+)\s+(.+)/mg;

you can access the full address of ‘Jeff’ with $alias{Jeff}.

Iterative Matching: Scalar Context, with /g
A scalar-context m/˙˙˙/g is a special construct quite differ ent fr om the others. Like a
nor mal m/˙˙˙/, it does just one match, but like a list-context m/˙˙˙/g, it pays atten-
tion to where previous matches occurred. Each time a scalar-context m/˙˙˙/g is
reached, such as in a loop, it finds the “next” match. If it fails, it resets the “current
position,” causing the next application to start again at the beginning of the string.

Her e’s a simple example:

$text = "WOW! This is a SILLY test.";

$text =˜ m/\b([a-z]+\b)/g;
print "The first all-lowercase word: $1\n";

$text =˜ m/\b([A-Z]+\b)/g;
print "The subsequent all-uppercase word: $1\n";

With both scalar matches using the /g modifier, it results in:

The first all-lowercase word: is
The subsequent all-uppercase word: SILLY

The two scalar-/g matches work together: the first sets the “current position” to
just after the matched lowercase word, and the second picks up from there to find
the first uppercase word that follows. The /g is requir ed for either match to pay
attention to the “current position,” so if either didn’t have /g, the second line
would refer to ‘WOW’.

29 April 2003 20:47

A scalar context /g match is quite convenient as the conditional of a while loop.
Consider:

while ($ConfigData =˜ m/ˆ(\w+)=(.,)/mg) {
my($key, $value) = ($1, $2);

+
+
+

}

All matches are eventually found, but the body of the while loop is executed
between the matches (well, after each match). Once an attempt fails, the result is
false and the while loop finishes. Also, upon failure, the /g state is reset, which
means that the next /g match starts over at the start of the string.

Compar e

while ($text =˜ m/(\d+)/) { # danger ous!
print "found: $1\n";

}

and:

while ($text =˜ m/(\d+)/g) {
print "found: $1\n";

}

The only differ ence is /g, but it’s a huge differ ence. If $text contained, say, our
earlier IP example, the second prints what we want:

found: 64
found: 156
found: 215
found: 240

The first, however, prints “found: 64” over and over, for ever. Without the /g, the
match is simply “find the first !(\d+) " in $text,” which is ‘64’ no matter how many
times it’s checked. Adding the /g to the scalar-context match turns it into “find the
next !(\d+) " in $text,” which finds each number in turn.

The “cur rent match location” and the pos() function

Every string in Perl has associated with it a “current match location” at which the
transmission first attempts the match. It’s a property of the string, and not associ-
ated with any particular regular expression. When a string is created or modified,
the “current match location” starts out at the beginning of the string, but when a
/g match is successful, it’s left at the location where the match ended. The next
time a /g match is applied to the string, the match begins inspecting the string at
that same “current match location.”

The Match Operator 313

29 April 2003 20:47

314 Chapter 7: Perl

You have access to the target string’s “current match location” via the pos(˙˙˙)

function. For example:

my $ip = "64.156.215.240";
while ($ip =˜ m/(\d+)/g) {

printf "found ’$1’ ending at location %d\n", pos($ip);
}

This produces:

found ’64’ ending at location 2
found ’156’ ending at location 6
found ’215’ ending at location 10
found ’240’ ending at location 14

(Remember, string indices are zer o-based, so “location 2” is just before the 3rd

character into the string.) After a successful /g match, $+[0] (the first element of
@+ + 302) is the same as the pos of the target string.

The default argument to the pos() function is the same default argument for the
match operator: the $R variable.

Pre-setting a string’s pos

The real power of pos() is that you can write to it, to tell the regex engine where
to start the next match (if that next match uses /g, of course). For example, the
web server logs I work with at Yahoo! are in a custom format that contains 32
bytes of fixed-width data, followed by the page being requested, followed by
other information. One way to pick out the page is to use !ˆ.{32} " to skip over the
fixed-width data:

if ($logline =˜ m/ˆ.{32}(\S+)/) {
$RequestedPage = $1;

}

This brute-force method isn’t elegant, and forces the regex engine to work to skip
the first 32 bytes. That’s less efficient and less clear than doing it explicitly ourself:

pos($logline) = 32; # The page starts at the 32nd character, so start the next match there . . .
if ($logline =˜ m/(\S+)/g) {

$RequestedPage = $1;
}

This is better, but isn’t quite the same. It has the regex start wher e we want it to
start, but doesn’t requir e a match at that position the way the original does. If for
some reason the 32nd character can’t be matched by !\S ", the original version cor-
rectly fails, but the new version, without anything to anchor it to a particular posi-
tion in the string, is subject to the transmission’s bump-along. Thus, it could retur n,
in error, a match of !\S+ " fr om later in the string. Luckily, the next section shows
that this is an easy problem to fix.

29 April 2003 20:47

Using !\G "

!\G " is the “anchor to where the previous match ended” metacharacter. It’s exactly
what we need to solve the problem in the previous section:

pos($logline) = 32; # The page starts at the 32nd character, so start the next match there . . .
if ($logline =˜ m/\G(\S+)/g) {

$RequestedPage = $1;
}

!\G " tells the transmission “don’t bump-along with this regex — if you can’t match
successfully right away, fail.”

Ther e ar e discussions of !\G " in previous chapters: see the general discussion in
Chapter 3 (+ 128), and the extended example in Chapter 5 (+ 212).

Note that Perl’s !\G " is restricted in that it works predictably only when it is the first
thing in the regex, and there is no top-level alternation. For example, in Chapter 6
when the CSV example is being optimized (+ 271), the regex begins with
!\G(?: ̂;,)˙˙˙ ". Because there’s no need to check for !\G " if the more restrictive !ˆ "

matches, you might be tempted to change this to !(?: ̂;\G,)˙˙˙ ". Unfortunately, this
doesn’t work in Perl; the results are unpr edictable.†

“Tag-team” matching with /gc

Nor mally, a failing m/˙˙˙/g match attempt resets the target string’s pos to the start
of the string, but adding the /c modifier to /g intr oduces a special twist, causing a
failing match to not reset the target’s pos. (/c is never used without /g, so I tend
to refer to it as /gc.)

m/˙˙˙/gc is most commonly used in conjunction with !\G " to create a “lexer” that
tokenizes a string into its component parts. Here’s a simple example to tokenize
the HTML in variable $html:

while (not $html =˜ m/\G\z/gc) # While we haven’t worked to the end . . .
{

if ($html =˜ m/\G(<[ˆ>]+>)/xgc) { print "TAG: $1\n" }
elsif ($html =˜ m/\G(&\w+;)/xgc) { print "NAMED ENTITY: $1\n" }
elsif ($html =˜ m/\G(&\#\d+;)/xgc) { print "NUMERIC ENTITY: $1\n" }
elsif ($html =˜ m/\G([ˆ<>&\n]+)/xgc) { print "TEXT: $1\n" }
elsif ($html =˜ m/\G \n /xgc) { print "NEWLINE\n" }
elsif ($html =˜ m/\G(.)/xgc) { print "ILLEGAL CHAR: $1\n" }
else {

die "$0: oops, this shouldn’t happen!";
}

}

† This would work with most other flavors that support !\G ", but even so, I would generally not recom-
mend using it, as the optimization gains by having !\G " at the start of the regex usually outweigh the
small gain by not testing !\G " an extra time (+ 245).

The Match Operator 315

29 April 2003 20:47

316 Chapter 7: Perl

The bold part of each regex matches one type of HTML construct. Each is checked
in turn starting from the current position (due to /gc), but can match only at the
curr ent position (due to !\G "). The regexes are checked in order until the construct
at that current position has been found and reported. This leaves $html’s pos at
the start of the next token, which is found during the next iteration of the loop.

The loop ends when m/\G\z/gc is able to match, which is when the current posi-
tion (!\G ") has worked its way to the very end of the string (!\z ").

An important aspect of this approach is that one of the tests must match each time
thr ough the loop. If one doesn’t (and if we don’t abort), there would be an infinite
loop, since nothing would be advancing or resetting $html’s pos. This example
has a final else clause that will never be invoked as the program stands now, but if
we were to edit the program (as we will soon), we could perhaps introduce a mis-
take, so keeping the else clause is prudent. As it is now, if the data contains a
sequence we haven’t planned for (such as ‘<>’), it generates one warning message
per unexpected character.

Another important aspect of this approach is the ordering of the checks, such as
the placement of !\G(.) " as the last check. Or, consider extending this application
to recognize <script> blocks with:

$html =˜ m/\G (<script[ˆ>],>.,?</script>)/xgcsi

(Wow, we’ve used five modifiers!) To work properly, this must be inserted into the
pr ogram befor e the currently-first !<[ˆ>]+> ". Otherwise, !<[ˆ>]+> " would match the
opening <script> tag “out from under” us.

Ther e’s a somewhat more advanced example of /gc in Chapter 3 (+ 130).

Pos-related summary

Her e’s a summary of how the match operator interacts with the target string’s pos:

Type of match Where match star ts pos upon success pos upon failure

m/˙˙˙/ start of string (pos ignor ed) reset to undef reset to undef

m/˙˙˙/g starts at target’s pos set to end of match reset to undef

m/˙˙˙/gc starts at target’s pos set to end of match left unchanged

Also, modifying a string in any way causes its pos to be reset to undef (which is
the initial value, meaning the start of the string).

The Match Operator’s Environmental Relations
The following sections summarize what we’ve seen about how the match operator
influences the Perl environment, and vice versa.

29 April 2003 20:47

The match operator’s side effects

Often, the side effects of a successful match are mor e important than the actual
retur n value. In fact, it is quite common to use the match operator in a void con-
text (i.e., in such a way that the retur n value isn’t even inspected), just to obtain
the side effects. (In such a case, it acts as if given a scalar context.) The following
summarizes the side effects of a successful match attempt:

• After-match variables like $1 and @+ ar e set for the remainder of the current
scope (+ 299).

• The default regex is set for the remainder of the current scope (+ 308).

• If m?˙˙˙? matches, it (the specific m?˙˙˙? operator) is marked as unmatchable, at
least until the next call of reset in the same package (+ 308).

Again, these side effects occur only with a match that is successful—an unsuccess-
ful match attempt has no influence on them. However, the following side effects
happen with any match attempt:

• pos is set or reset for the target string (+ 313).

• If /o is used, the regex is “fused” to the operator so that re-evaluation does
not occur (+ 352).

Outside influences on the match operator

What a match operator does is influenced by more than just its operands and
modifiers. This list summarizes the outside influences on the match operator:

context
The context that a match operator is applied in (scalar, array, or void) has a
large influence on how the match is perfor med, as well as on its retur n
value and side effects.

pos(˙˙˙)

The pos of the target string (set explicitly or implicitly by a previous match)
indicates where in the string the next /g-gover ned match should begin. It is
also where !\G " matches.

default regex
The default regex is used if the provided regex is empty (+ 308).

study

It has no effect on what is matched or retur ned, but if the target string has
been studied, the match might be faster (or slower). See “The Study Func-
tion” (+ 359).

m?˙˙˙? and reset

The invisible “has/hasn’t matched” status of m?˙˙˙? operators is set when
m?˙˙˙? matches or reset is called (+ 308).

The Match Operator 317

29 April 2003 20:47

318 Chapter 7: Perl

Keeping your mind in context (and context in mind)

Befor e leaving the match operator, I’ll put a question to you. Particularly when
changing among the while, if, and foreach contr ol constructs, you really need
to keep your wits about you. What do you expect the following to print?

while ("Larry Curly Moe" =˜ m/\w+/g) {
print "WHILE stooge is $&.\n";

}
print "\n";

if ("Larry Curly Moe" =˜ m/\w+/g) {
print "IF stooge is $&.\n";

}
print "\n";

foreach ("Larry Curly Moe" =˜ m/\w+/g) {
print "FOREACH stooge is $&.\n";

}

It’s a bit tricky. v Turn the page to check your answer.

The Substitution Operator
Perl’s substitution operator s/˙˙˙/˙˙˙/ extends a match to a full match-and-replace.
The general form is:

$text =˜ s/regex/replacement/modifiers

In short, the text first matched by the regex operand is replaced by the value of
the replacement operand. If the /g modifier is used, the regex is repeatedly
applied to the text following the match, with additional matched text replaced
as well.

As with the match operator, the target text operand and the connecting =˜ ar e
optional if the target is the variable $R. But unlike the match operator’s m, the sub-
stitution’s s is never optional.

We’ve seen that the match operator is fairly complex — how it works, and what it
retur ns, is dependent upon the context it’s called in, the target string’s pos, and
the modifiers used. In contrast, the substitution operator is simple: it always
retur ns the same information (an indication of the number of substitutions done),
and the modifiers that influence how it works are easy to understand.

You can use any of the core modifiers described on page 292, but the substitution
operator also supports two additional modifiers: /g and, described in a bit, /e.

29 April 2003 20:47

The Replacement Operand
With the normal s/˙˙˙/˙˙˙/, the replacement operand immediately follows the regex
operand, using a total of three instances of the delimiter rather than the two of
m/˙˙˙/. If the regex uses balanced delimiters (such as <˙˙˙>), the replacement
operand then has its own independent pair of delimiters (yielding a total of four).
For example, s{˙˙˙}{˙˙˙} and s[˙˙˙]/˙˙˙/ and s<˙˙˙>’˙˙˙’ ar e all valid. In such cases,
the two sets may be separated by whitespace, and if so, by comments as well. Bal-
anced delimiters are commonly used with /x or /e:

$text =˜ s{
...some big regex here, with lots of comments and such...

} {
...a Perl code snippet to be evaluated to produce the replacement text...

}ex;

Take care to separate in your mind the regex and replacement operands. The
regex operand is parsed in a special regex-specific way, with its own set of special
delimiters (+ 291). The replacement operand is parsed and evaluated as a normal
double-quoted string. The evaluation happens after the match (and with /g, after
each match), so $1 and the like are available to refer to the proper match slice.

Ther e ar e two situations where the replacement operand is not parsed as a dou-
ble-quoted string:

• When the replacement operand’s delimiters are single quotes, it is parsed as a
single-quoted string, which means that no variable interpolation is done.

• If the /e modifier (discussed in the next section) is used, the replacement
operand is parsed like a little Perl script instead of like a double-quoted string.
The little Perl script is executed after each match, with its result being used as
the replacement.

The /e Modifier
The /e modifier causes the replacement operand to be evaluated as a Perl code
snippet, as if with eval {˙˙˙}. The code snippet’s syntax is checked to ensure it’s
valid Perl when the script is loaded, but the code is evaluated afresh after each
match. After each match, the replacement operand is evaluated in a scalar context,
and the result of the code is used as the replacement. Here’s a simple example:

$text =˜ s/-time-/localtime/ge;

This replaces occurrences of !-time- " with the results of calling Perl’s localtime

function in a scalar context (which retur ns a textual repr esentation of the current
time, such as “Wed Sep 25 18:36:51 2002”).

Since the evaluation is done after each match, you can refer to the text just
matched with the after-match variables like $1. For example, special characters

The Substitution Operator 319

29 April 2003 20:47

320 Chapter 7: Perl

Quiz Answer
v Answer to the question on page 318.

The question snippets on page 318 produce:

WHILE stooge is Larry.
WHILE stooge is Curly.
WHILE stooge is Moe.

IF stooge is Larry.

FOREACH stooge is Moe.
FOREACH stooge is Moe.
FOREACH stooge is Moe.

Note that if the print within the foreach loop had referr ed to $R rather
than $&, its results would have been the same as the while’s. In this
foreach case, however, the result retur ned by the m/˙˙˙/g, (’Larry’,
’Curly’, ’Moe’), goes unused. Rather, the side effect $& is used, which
almost certainly indicates a programming mistake, as the side effects of a list-
context m/˙˙˙/g ar e not often useful.

that might not otherwise be allowed in a URL can be encoded using % followed by
their two-digit hexadecimal repr esentation. To encode all non-alphanumerics this
way, you can use

$url =˜ s/([ˆa-zA-Z0-9])/sprintf(’%%%02x’, ord($1))/ge;

and to decode back to the original, you can use:

$url =˜ s/%([0-9a-f][0-9a-f])/pack("C", hex($1))/ige;

In short, sprintf(’%%%02x’, ord(character)) converts characters to their numeric
URL repr esentation, while pack("C", value) does the opposite; consult your
favorite Perl documentation for more infor mation.

Multiple uses of /e

Nor mally, repeating a modifier with an operator doesn’t hurt (except perhaps to
confuse the reader), but repeating the /e modifier actually changes how the
replacement is done. Normally, the replacement operand is evaluated once, but if
mor e than one ‘e’ is given, the results of the evaluation are themselves evaluated
as Perl, over and over, for as many extra ‘e’ as are provided. This is perhaps useful
mostly for an Obfuscated Perl Contest.

Still, it can be useful. Consider interpolating variables into a string manually (such
as if the string is read from a configuration file). That is, you have a string that
looks like ‘˙˙˙ $var ˙˙˙’ and you want to replace the substring ‘$var’ with the value
of the variable $var.

29 April 2003 20:47

A simple approach uses:

$data =˜ s/(\$[a-zA-ZR]\w+)/$1/eeg;

Without any /e, this would simply replace the matched ‘$var’ with itself, which is
not very useful. With one /e, it evaluates the code $1, yielding ‘$var’, which
again, effectively replaces the matched text with itself (which is again, not very
useful). But with two /e, that ‘$var’ is itself evaluated, yielding its contents. Thus,
this mimics the interpolation of variables.

Context and Return Value
Recall that the match operator retur ns dif ferent values based upon the particular
combination of context and /g. The substitution operator, however, has none of
these complexities— it always retur ns either the number of substitutions perfor med
or, if none were done, an empty string.

Conveniently, when interpreted as a Boolean (such as for the conditional of an
if), the retur n value is taken as true if any substitutions are done, false if not.

The Split Operator
The multifaceted split operator (often called a function in casual conversation) is
commonly used as the converse of a list-context m/˙˙˙/g (+ 311). The latter retur ns
text matched by the regex, while a split with the same regex retur ns text sepa-
rated by matches. The normal match $text =˜ m/:/g applied against a $text of
‘IO.SYS:225558:95-10-03:-a-sh:optional’, retur ns the four-element list

(’:’, ’:’, ’:’, ’:’)

which doesn’t seem useful. On the other hand, split(/:/, $text) retur ns the
five-element list:

(’IO.SYS’, ’225558’, ’95-10-03’, ’-a-sh’, ’optional’)

Both examples reflect that !:" matches four times. With split, those four matches
partition a copy of the target into five chunks, which are retur ned as a list of five
strings.

That example splits the target string on a single character, but you can split on any
arbitrary regular expression. For example,

@Paragraphs = split(m/\s+<p>\s+/i, $html);

splits the HTML in $html into chunks, at <p> or <P>, surr ounded by optional
whitespace. You can even split on locations, as with

@Lines = split(m/ˆ/m, $lines);

to break a string into its logical lines.

In its most simple form with simple data like this, split is as easy to understand
as it is useful. However, ther e ar e many options, special cases, and special

The Split Operator 321

29 April 2003 20:47

322 Chapter 7: Perl

situations that complicate things. Before getting into the details, let me show two
particularly useful special cases:

• The special match operand // causes the target string to be split into its com-
ponent characters. Thus, split(//, "short test") retur ns a list of ten ele-
ments: ("s", "h", "o", ˙˙˙, "s", "t").

• The special match operand " " (a normal string with a single space) causes
the target string to be split on whitespace, similar to using m/\s+/ as the
operand, except that any leading and trailing whitespace are ignor ed. Thus,
split(" ", " a short test ") retur ns the strings ‘a’, ‘short’, and ‘test’.

These and other special cases are discussed a bit later, but first, the next sections
go over the basics.

Basic Split
split is an operator that looks like a function, and takes up to three operands:

split(match operand, target string, chunk-limit operand)

The parentheses are optional. Default values (discussed later in this section) are
pr ovided for operands left off the end.

split is always used in a list context. Common usage patterns include:

($var1, $var2, $var3, ˙˙˙) = split(˙˙˙);

@array = split(˙˙˙);

for my $item (split(˙˙˙)) {
+
+
+

}

Basic match operand

The match operand has several special-case situations, but it is normally the same
as the regex operand of the match operator. That means that you can use /˙˙˙/ and
m{˙˙˙} and the like, a regex object, or any expression that can evaluate to a string.
Only the core modifiers described on page 292 are supported.

If you need parentheses for grouping, be sure to use the !(?:˙˙˙)" non-capturing
kind. As we’ll see in a few pages, the use of capturing parentheses with split

tur ns on a very special feature.

Target string operand

The target string is inspected, but is never modified by split. The content of $R is
the default if no target string is provided.

29 April 2003 20:47

Basic chunk-limit operand

In its primary role, the chunk-limit operand specifies a limit to the number of
chunks that split partitions the string into. With the sample data from the first
example, split(/:/, $text, 3) retur ns:

(’IO.SYS’, ’225558’, ’95-10-03:-a-sh:optional’)

This shows that split stopped after /:/ matched twice, resulting in the
requested three-chunk partition. It could have matched additional times, but that’s
irr elevant because of this example’s chunk limit. The limit is an upper bound, so
no more than that many elements will ever be retur ned (unless the regex has cap-
turing parentheses, which is covered in a later section). You may still get fewer
elements than the chunk limit; if the data can’t be partitioned enough to begin
with, nothing extra is produced to “fill the count.” With our example data,
split(/:/, $text, 99) still retur ns only a five-element list. However, ther e is an
important differ ence between split(/:/, $text) and split(/:/, $text, 99)

which does not manifest itself with this example — keep this in mind when the
details are discussed later.

Remember that the chunk -limit operand refers to the chunks between the
matches, not to the number of matches themselves. If the limit were to refer to the
matches themselves, the previous example with a limit of three would produce

(’IO.SYS’, ’225558’, ’95-10-03’, ’-a-sh:optional’)

which is not what actually happens.

One comment on efficiency: let’s say you intended to fetch only the first few
fields, such as with:

($filename, $size, $date) = split(/:/, $text);

As a perfor mance enhancement, Perl stops splitting after the fields you’ve
requested have been filled. It does this by automatically providing a chunk limit of
one more than the number of items in the list.

Advanced split

split can be simple to use, as with the examples we’ve seen so far, but it has
thr ee special issues that can make it somewhat complex in practice:

• Retur ning empty elements

• Special regex operands

• A regex with capturing parentheses

The next sections cover these in detail.

The Split Operator 323

29 April 2003 20:47

324 Chapter 7: Perl

Retur ning Empty Elements
The basic premise of split is that it retur ns the text separated by matches, but
ther e ar e times when that retur ned text is an empty string (a string of length zero,
e.g., ""). For example, consider

@nums = split(m/:/, "12:34::78");

This retur ns

("12", "34", "", "78")

The regex !:" matches three times, so four elements are retur ned. The empty third
element reflects that the regex matched twice in a row, with no text in between.

Tr ailing empty elements

Nor mally, trailing empty elements are not retur ned. For example,

@nums = split(m/:/, "12:34::78:::");

sets @nums to the same four elements

("12", "34", "", "78")

as the previous example, even though the regex was able to match a few extra
times at the end of the string. By default, split does not retur n empty elements at
the end of the list. However, you can have split retur n all trailing elements by
using an appropriate chunk-limit operand . . .

The chunk-limit operand’s second job

In addition to possibly limiting the number of chunks, any non-zero chunk-limit
operand also preserves trailing empty items. (A chunk limit given as zero is exactly
the same as if no chunk limit is given at all.) If you don’t want to limit the number
of chunks retur ned, but do want to leave trailing empty elements intact, simply
choose a very large limit. Or, better yet, use -1, because a negative chunk limit is
taken as an arbitrarily large limit: split(/:/, $text, -1) retur ns all elements,
including any trailing empty ones.

At the other extreme, if you want to remove all empty items, you could put
grep {length} befor e the split. This use of grep lets pass only list elements with
non-zer o lengths (in other words, elements that aren’t empty):

my @NonEmpty = grep { length } split(/:/, $text);

Special matches at the ends of the string

A match at the very beginning normally produces an empty element:

@nums = split(m/:/, ":12:34::78");

29 April 2003 20:47

That sets @nums to:

("", "12", "34", "", "78")

The initial empty element reflects the fact that the regex matched at the beginning
of the string. However, as a special case, if the regex doesn’t actually match any
text when it matches at the start or end of the string, leading and/or trailing empty
elements are not pr oduced. A simple example is split(/\b/, "a simple test"),
which can match at the six marked locations in ‘a simple test’. Even though it
matches six times, it doesn’t retur n seven elements, but rather only the five ele-
ments: ("a", " ", "simple", " ", "test"). Actually, we’ve already seen this spe-
cial case, with the @Lines = split(m/ˆ/m, $lines) example on page 321.

Split’s Special Regex Operands
split’s match operand is normally a regex literal or a regex object, as with the
match operator, but there are some special cases:

• An empty regex for split does not mean “Use the current default regex,” but
to split the target string into a list of characters. We saw this before at the start
of the split discussion, noting that split(//, "short test") retur ns a list
of ten elements: ("s", "h", "o", ˙˙˙, "s", "t").

• A match operand that is a string (not a regex) consisting of exactly one space
is a special case. It’s almost the same as /\s+/, except that leading whitespace
is skipped. This is all meant to simulate the default input-record-separator
splitting that awk does with its input, although it can certainly be quite useful
for general use.

If you’d like to keep leading whitespace, just use m/\s+/ dir ectly. If you’d like
to keep trailing whitespace, use -1 as the chunk-limit operand.

• If no regex operand is given, a string consisting of one space (the special case
in the previous point) is used as the default. Thus, a raw split without any
operands is the same as split(’ ’, $Q, 0).

• If the regex !ˆ " is used, the /m modifier (for the enhanced line-anchor match
mode) is automatically supplied for you. (For some reason, this does not hap-
pen for !$ ".) Since it’s so easy to just use m/ˆ/m explicitly, I would recommend
doing so, for clarity. Splitting on m/ˆ/m is an easy way to break a multiline
string into individual lines.

Split has no side effects

Note that a split match operand often looks like a match operator, but it has
none of the side effects of one. The use of a regex with split doesn’t affect the
default regex for later match or substitution operators. The variables $&, $’, $1,

The Split Operator 325

29 April 2003 20:47

326 Chapter 7: Perl

and so on are not set or otherwise affected by a split. A split is completely iso-
lated from the rest of the program with respect to side effects.†

Split’s Match Operand with Capturing Parentheses
Capturing parentheses change the whole face of split. When they are used, the
retur ned list has additional, independent elements interjected for the item(s) cap-
tur ed by the parentheses. This means that some or all text normally not retur ned
by split is now included in the retur ned list.

For example, as part of HTML pr ocessing, split(/(<[ˆ>]+>)/) tur ns

˙˙˙ and very very much effort˙˙˙

into:

(’... and ’, ’’, ’very ’, ’’,
’very’, ’’, ’ much’, ’’, ’ effort...’)

With the capturing parentheses removed, split(/<[ˆ>]+>/) retur ns:

(’... and ’, ’very ’, ’very’, ’ much’, ’ effort...’)

The added elements do not count against a chunk limit. (The chunk limit limits the
chunks that the original string is partitioned into, not the number of elements
retur ned.)

If there are multiple sets of capturing parentheses, multiple items are added to the
list with each match. If there are sets of capturing parentheses that don’t contribute
to a match, undef elements are inserted for them.

Fun with Perl Enhancements
Many regular-expr ession concepts that are now available in other languages were
first made available only in Perl. Examples include non-capturing parentheses,
lookahead, (and later, lookbehind), free-spacing mode, (most modes, actually —
and with them comes !\A ", !\z ", and !\Z "), atomic grouping, !\G ", and the conditional
construct. However, these are no longer Perl specific, so they are all covered in
the main chapters of this book.

Still, Perl developers remain innovative, so there are some major concepts avail-
able at this time only in Perl. One of the most interesting is the ability to execute
arbitrary code during the match attempt. Perl has long featured strong integration
of regular expressions into code, but this brings integration to a whole new level.

† Actually, there is one side effect remaining from a feature that has been deprecated for many years,
but has not actually been removed from the language yet. If split is used in a scalar or void con-
text, it writes its results to the @R variable (which is also the variable used to pass function argu-
ments, so be careful not to use split in these contexts by accident). use warnings or the -w com-
mand-line argument warns you if split is used in either context.

29 April 2003 20:47

We’ll continue with a short overview about this and other innovations available
curr ently only in Perl, followed by the details.

The dynamic regex constr uct !(??{ perl code })"

Each time this construct is reached during the application of the regex in
which it’s found, the perl code is executed. The result of that execution
(either a regex object or a string that’s then interpreted as a regex) is applied
right then, as part of the current match.

This simple example !ˆ(\d+)(??{ "X{$1}" })$ " is shown with the dynamic
regex construct underlined. Overall, this regex matches a number at the
beginning of the line, followed by exactly that many ‘X’ until the end of the
line. It matches ‘3XXX’ and ‘12XXXXXXXXXXXX’, for example, but not ‘3X’ or
‘7XXXX’. If we trace though the ‘3XXX’ example, the leading !(\d+) " part
matches ‘3XXX’, setting $1 to ‘3’. The regex engine then reaches the dynamic
regex construct, which executes the code "X{$1}", resulting in the value
‘X{3}’. This is then interpreted as !X{3} ", and applied as part of the current
regex (matching the ‘3XXX’). Once that’s done, the trailing !$ " then matches at
‘3XXX’, resulting in an overall match.

As we’ll see in the examples that follow, a dynamic regex is particularly use-
ful for matching arbitrarily nested constructs.

The embedded-code constr uct !(?{ arbitrary perl code })"

Like the dynamic regex construct, this construct also executes the Perl code
each time it’s reached during the application of a regex, but this construct is
mor e general in that the code doesn’t need to retur n any specific result. Usu-
ally, the retur n value is not even used. (But in case it is needed later in the
same regex, the retur n value is available in the $ˆR variable + 302).

Ther e’s one case where the value produced by the code is used: when an
embedded-code construct is used as the if of an !(? if then < else)" conditional
(+ 138). In this case, the result is interpreted as a Boolean value, upon
which either the then or else part will be applied.

Embedded code can be used for many things, but it’s particularly useful for
debugging. Here’s a simple example that displays a message every time the
regex is actually applied, with the embedded-code construct underlined:

"have a nice day" =˜ m{
(?{ print "Starting match.\n" })
\b(?: the ; an ; a)\b

}x;

The regex matches fully just once in this test, but the message is shown six
times, reflecting that the regex was at least partially applied by the transmis-
sion at the five character positions prior to the sixth time, at which point it
matches fully.

Fun with Perl Enhancements 327

29 April 2003 20:47

328 Chapter 7: Perl

Regex-literal overloading
Regex-literal overloading lets you add your own custom pre-pr ocessing of
regex literals, before they’r e given to the regex engine. You can use this to
ef fectively add features to Perl’s regex flavor. For example, Perl doesn’t have
separate start-of-word and end-of-word metacharacters (it has a catch-all \b
word boundary), but you might want to have it recognize \< and \>, con-
verting these constructs behind the scenes to ones Perl does know.

Regex overloading has some important limitations that severely restrict its
usefulness. We’ll look at this, as well as examples like the \< and \> idea,
later in this section.

Force match of single byte
One other feature I should mention in this list is that the !\C " metacharacter
matches one byte, even if that byte is just one of several that might encode a
single character. This is dangerous — its misuse can cause internal errors, so
it shouldn’t be used unless you really know what you’re doing. I can’t think
of a good use for it, so I won’t mention it further.

When working with Perl code embedded within a regex (either in a dynamic
regex construct or an embedded-code construct), it’s best to use only global vari-
ables until you understand the important issue related to my variables discussed
starting on page 338.

Using a Dynamic Regex to Match Nested Pair s
A dynamic regex’s main use is to allow a regex to match arbitrarily nested con-
structs (something long thought to be impossible with regular expressions). Its
quintessential example is to match content with arbitrarily nested parentheses. To
see how a dynamic regex is useful for this, let’s first look at why it’s not possible
with traditional constructs.

This simple regex matches a parenthesized run of text: !\(([ˆ()]),\)". It doesn’t
allow parentheses within the outer parentheses, so it doesn’t allow any nesting
(that is, it supports zero levels of nesting). We can put it into a regex object and
use it like this:

my $Level0 = qr/ \(([ˆ()])+ \) /x; # Par enthesized text

+
+
+

if ($text =˜ m/\b(\w+$Level0)/x) {
print "found function call: $1\n";

}

This would match “substr($str, 0, 3)”, but not “substr($str, 0, (3+2))”
because it has nested parentheses. Let’s expand our regex to handle it. That means
accommodating one level of nesting.

29 April 2003 20:47

Allowing one level of nesting means allowing parenthesized text within the outer
par entheses. So, we need to expand on the subexpression that matches between
them, which is currently ![ˆ()]", by adding a subexpression that matches parenthe-
sized text. Well, we just created that: $Level0 holds such a regex. Using it, we can
cr eate the next level:

my $Level0 = qr/ \(([ˆ()])+ \) /x; # Par enthesized text
my $Level1 = qr/ \(([ˆ()]; $Level0)+ \) /x; # One level of nesting

The $Level0 her e is the same as before; what’s new is its use in building
$Level1, which matches its own set of parentheses, plus those of $Level0. That’s
one level of nesting.

To match another level, we can use the same approach, creating a $Level2 that
uses $Level1 (which still uses $Level0):

my $Level0 = qr/ \(([ˆ()])+ \) /x; # Par enthesized text
my $Level1 = qr/ \(([ˆ()] ; $Level0)+ \) /x; # One level of nesting
my $Level2 = qr/ \(([ˆ()] ; $Level1)+ \) /x; # Two levels of nesting

We can continue this indefinitely:

my $Level3 = qr/ \(([ˆ()] ; $Level2)+ \) /x; # Thr ee levels of nesting
my $Level4 = qr/ \(([ˆ()] ; $Level3)+ \) /x; # Four levels of nesting
my $Level5 = qr/ \(([ˆ()] ; $Level4)+ \) /x; # Five levels of nesting

+
+
+

Figur e 7-1 shows the first few levels graphically.

\(([^()])* \)

\(([^()]|)* \)Level 0

\(([^()]|)* \)Level 1

\(([^()]|)* \)Level 2Level 3

Level 2

Level 1

Level 0

Figur e 7-1: Matching a few levels of parentheses

It’s interesting to see the result of all those levels. Here’s what $Level3 boils
down to:

\(([ˆ()];\(([ˆ()];\(([ˆ()];\(([ˆ()])+\))+\))+\))+\)

Wow, that’s ugly.

Fun with Perl Enhancements 329

29 April 2003 20:47

330 Chapter 7: Perl

Luckily, we don’t have to interpret it directly (that’s the regex engine’s job). The
appr oach with the Level variables is easy enough to work with, but its drawback
is that nesting is limited to however many $Level variables we build. This
appr oach doesn’t allow us to match to an arbitrary level. (Murphy’s Law being
what it is, if we happen to pick X levels to support, we’ll run into data with X+1
levels of nesting.)

Luckily, we can use a dynamic regex to handle nesting to an arbitrary level. To get
ther e, realize that each of the $Level variables beyond the first is constructed
identically: when it needs to match an additional level of nesting, it includes the
$Level variable below it. But if the $Level variables are all the same, it could just
as well include the $Level above it. In fact, if they’re all the same, it could just
include itself. If it could somehow include itself when it wanted to match another
level of nesting, it would recursively handle any level of nesting.

And that’s just what we can do with a dynamic regex. If we create a regex object
comparable to one of the $Level variables, we can refer to it from within a
dynamic regex. (A dynamic-regex construct can contain arbitrary Perl code, so
long as its results can be interpreted as a regular expression; Perl code that merely
retur ns a pre-existing regex object certainly fits the bill.) If we put our $Level-like
regex object into $LevelN, we can refer to it with !(??{ $LevelN }) ", like this:

my $LevelN; # This must be predeclar ed because it’s used in its own definition.
$LevelN = qr/ \(([ˆ()] ; (??{ $LevelN }))+ \) /x;

This matches arbitrarily nested parenthesized text, and can be used just like
$Level0 was used earlier:

if ($text =˜ m/\b(\w+$LevelN)/x) {
print "found function call: $1\n";

}

Phew! It’s not necessarily easy to wrap one’s brain around this, but once it “clicks,”
it’s a valuable tool.

Now that we have the basic approach worked out, I’d like to make a few tweaks
for efficiency’s sake. I’ll replace the capturing parentheses with atomic grouping
(ther e’s no need to capture, nor to backtrack), and once that’s done, I can change
![ˆ()] " to ![ˆ()]+ " for added efficiency. (Don’t make this change without using
atomic grouping, or you’ll set yourself up for a neverending match + 226.)

Finally, I’d like to move the !\(" and !\)" so that they directly surround the dynamic
regex. This way, the dynamic regex construct isn’t invoked by the engine until it’s
sur e that there’s something for it to match. Here’s the revised version:

$LevelN = qr/ (?> [ˆ()]+ ; \((??{ $LevelN }) \))+ /x;

Since this no longer has outer !\(˙˙˙\)", we need to include them ourselves when
invoking $LevelN.

29 April 2003 20:47

As a side effect of that, we have the flexibility to apply it where ther e may be sets
of parentheses, not just where ther e ar e sets of parentheses:

if ($text =˜ m/\b(\w+ \($LevelN \))/x) {
print "found function call: $1\n";

}

if (not $text =˜ m/ˆ $LevelN $/x) {
print "mismatched parentheses!\n";

}

You can see another example of $LevelN in action on page 343.

Using the Embedded-Code Construct
The embedded-code construct is particularly useful for regex debugging, and for
accumulating information about a match while it’s happening. The next few pages
walk through a series of examples that eventually lead to a method for mimicking
POSIX match semantics. The journey there is perhaps more inter esting than the
actual destination (unless you need POSIX match semantics, of course) because of
the useful techniques and insight we gain along the way.

We’ll start with some simple regex debugging techniques.

Using embedded code to display match-time infor mation

This code:

"abcdefgh" =˜ m{
(?{ print "starting match at [$‘;$’]\n" })
(?:d;e;f)

}x;

pr oduces:

starting match at [;abcdefgh]
starting match at [a;bcdefgh]
starting match at [ab;cdefgh]
starting match at [abc;defgh]

The embedded-code construct is the first thing in the regex, and so executes

print "starting match at [$‘;$’]\n"

whenever the regex starts a new match attempt. The displayed string uses the $‘

and $’ variables (+ 300)† to print the target text being matched, with ‘;’ inserted
to mark the current location in the match (which in this case is where the match
attempt is starting). From the result, you can tell that the regex was applied four
times by the transmission (+ 148) before it was successful.

† Nor mally, I recommend against using the special match variables $‘, $&, and $’, as they can inflict a
major efficiency penalty on the entire program (+ 356), but they’re fine for temporary debugging.

Fun with Perl Enhancements 331

29 April 2003 20:47

332 Chapter 7: Perl

In fact, if we were to add

(?{ print "matched at [$‘<$&>$’]\n" })

just before the end of the regex, it would show the match:

matched at [abc<d>efgh]

Now, compare the first example with the following, which is identical except that
the “main” regex is now ![def] " rather than !(?:d;e;f)":

"abcdefgh" =˜ m{
(?{ print "starting match at [$‘;$’]\n" })
[def]

}x;

In theory, the results should be identical, yet this produces only:

starting match at [abc;defgh]

Why the differ ence? Perl is smart enough to apply the initial class discrimination
optimization (+ 246) to the regex with ![def] ", ther eby allowing the transmission
to bypass attempts it felt were obviously destined to fail. As it turns out, it was
able to bypass all attempts except the one that resulted in a match, and the
embedded-code construct allows us to see that happen.

panic: top_env
If you’re working with embedded code or a dynamic regex, and your pro-
gram suddenly ends with an unceremonial

panic: topRenv

it is likely due to a syntax error in the code part of the regex. Perl currently
doesn’t handle certain kinds of broken syntax well, and the panic is the
result. The solution, of course, is to correct the syntax.

Using embedded code to see all matches

Perl has a Traditional NFA engine, so it stops the moment a match is found, even
though there may be additional possible matches. With the clever use of embed-
ded code, we can trick Perl into showing us all possible matches. To see how,
let’s revisit the silly ‘oneself’ example from page 177:

"oneselfsufficient" =˜ m{
one(self)?(selfsufficient)?

(?{ print "matched at [$‘<$&>$’]\n" })
}x;

29 April 2003 20:47

As might be expected, this displays

matched at [<oneself>sufficient]

indicating that ‘oneselfsufficient’ had been matched at that point in the regex.

It’s important to realize that despite the “matched” in the message, the print is
not actually showing “the match,” but rather the match to that point. The distinc-
tion is academic with this example because the embedded-code construct is the
last thing in the regex. We know that the regex does indeed finish the moment the
embedded-code construct has finished, reporting that same result as the actual
match.

What if we added !(?!) " just after the embedded-code construct? !(?!) " is a negative
lookahead that always fails. When it fails just after the embedded code is pro-
cessed (just after a “matched” message is printed), it forces the engine to backtrack
in search of a (new) match. The failure is forced after every “match” is printed, so
we end up exploring every path to a match, and thus see all possible matches:

matched at [<oneself>sufficient]
matched at [<oneselfsufficient>]
matched at [<one>selfsufficient]

What we’ve done ensures that the overall match attempt actually fails, but in doing
so we’ve got the regex engine to report all the possible matches. Without the
!(?!) ", Perl retur ns the first match found, but with it, we can see the remaining
per mutations.

With that in mind, what do you think the following prints?

"123" =˜ m{
\d+
(?{ print "matched at [$‘<$&>$’]\n" })
(?!)

}x;

It displays:

matched at [<123>]
matched at [<12>3]
matched at [<1>23]
matched at [1<23>]
matched at [1<2>3]
matched at [12<3>]

Hopefully at least the first three were expected, but the rest might be unexpected
if you’re not on your toes. The (?!) forces backtracking and the eventual appear-
ance of the 2nd and 3rd lines. When the attempt at the start of the line fails, the
transmission reapplies the regex again starting just before the 2nd character. (Chap-
ter 4 explains this in great detail.) The 4th and 5th lines shown are from that second
attempt, and the last line shown is from the third attempt.

Fun with Perl Enhancements 333

29 April 2003 20:47

334 Chapter 7: Perl

So, adding the (?!) really does cause it to show all possible matches, not just all
of them from a particular starting point. It may be useful to see only the possible
matches from a particular starting point; we’ll look into that in a bit.

Finding the longest match

Now, instead of showing all the matches, let’s find and save the longest match. We
can do this by using a variable to keep track of the longest match seen so far and
comparing each new “almost match” against it. Here is the solution with the
‘oneself’ example:

$longestRmatch = undef; # We’ll keep track of the longest match here

"oneselfsufficient" =˜ m{
one(self)?(selfsufficient)?
(?{

Check to see if the current match ($&) is the longest so far
if (not defined($longestRmatch)

or
length($&) > length($longestRmatch))

{
$longestRmatch = $&;

}
})
(?!) # For ce failur e so we’ll backtrack to find further "matches"

}x;

Now report the accumulated result, if any
if (defined($longestRmatch)) {

print "longest match=[$longestRmatch]\n";
} else {

print "no match\n";
}

Not surprisingly, this shows ‘longest match=[oneselfsufficient]’. That bit of
embedded code is pretty long, and something we’ll likely use in the future, so let’s
encapsulate it and the !(?!) " into their own regex object:

my $RecordPossibleMatch = qr{
(?{

Check to see if the current match ($&) is the longest so far
if (not defined($longestRmatch)

or
length($&) > length($longestRmatch))

{
$longestRmatch = $&;

}
})
(?!) # For ce failur e so we’ll backtrack to find further "matches"

}x;

29 April 2003 20:47

Her e’s a simple example that finds ‘9938’, the longest match overall :

$longestRmatch = undef; # We’ll keep track of the longest match here

"800-998-9938" =˜ m{ \d+ $RecordPossibleMatch }x;

Now report the accumulated result, if any
if (defined($longestRmatch)) {

print "longest match=[$longestRmatch]\n";
} else {

print "no match\n";
}

Finding the longest-leftmost match

Now that we know how to find the longest match overall, let’s restrict it to finding
the longest-leftmost match. That just happens to be the match that a POSIX NFA

would find (+ 177). To accomplish this, we need to disable the transmission’s
bump-ahead if we’ve seen a match so far. That way, once we find the first match,
nor mal backtracking still brings us to any other matches available from the same
starting location (allowing us to keep track of the longest match), but the disabled
bump-ahead inhibits the finding of matches that start later in the string.

Perl doesn’t give us direct hooks into the transmission, so we can’t disable the
bump-ahead directly, but we can get the same effect by not allowing the regex to
pr oceed past the start if $longestRmatch is already defined. The test for that is
!(?{ defined $longestRmatch})", but that alone not enough, since it’s just a test.
The key to using the results of the test lies in a conditional.

Using embedded code in a conditional
To have the regex engine respond to the results of our test, we use the test as the
if of an !(? if then < else)" conditional (+ 138). Since we want the regex to stop if the
test is true, we use a fail-now (?!) as the then part. (We don’t need an else part,
so we just omit it.) Here’s a regex object that encapsulates the conditional:

my $BailIfAnyMatch = qr/(?(?{ defined $longestRmatch})(?!))/;

The if part is underlined, and the then part is shown in bold. Here it is in action,
combined with the $RecordPossibleMatch defined on the facing page:

"800-998-9938" =˜ m{ $BailIfAnyMatch \d+ $RecordPossibleMatch }x;

This finds ‘800’, the POSIX “longest of all leftmost matches” match.

Using local in an Embedded-Code Construct
The use of local within an embedded-code construct takes on special meaning.
Understanding it requir es a good understanding of dynamic scoping (+ 295) and
of the “crummy analogy” from the Chapter 4’s discussion of how a regex-dir ected
NFA engine goes about its work (+ 158). The following contrived (and, as we’ll
see, flawed) example helps to illustrate why, without a lot of extraneous clutter. It

Fun with Perl Enhancements 335

29 April 2003 20:47

336 Chapter 7: Perl

checks to see if a line is composed of only !\w+ " and !\s+ ", but counts how many of
the !\w+ " ar e really !\d+\b ":

my $Count = 0;

$text =˜ m{
ˆ (?> \d+ (?{ $Count++ }) \b < \w+ < \s+)+ $

}x;

When this is matched against a string like ‘123 abc 73 9271 xyz’, the $Count

variable is left with a value of three. However, when applied to ‘123 abc 73xyz’
it’s left with a value of two, even though it should be left with a value of just one.
The problem is that $Count is updated after matching ‘73’, something that is
matched by !\d+ " but later “unmatched” via backtracking because the subsequent
!\b " can’t match. The problem arises because the code executed via the embedded-
code construct is not somehow “unexecuted” when its part of the regex is
“unmatched” via backtracking.

In case you have any confusion with the use of !(?>˙˙˙)" atomic grouping (+ 137)
and the backtracking going on here, I’ll mention that the atomic grouping is used
to prevent a neverending-match (+ 269), and does not affect backtracking within
the construct, only backtracking back into the construct after it’s been exited. So
the !\d+ " is free to be “unmatched” if the subsequent !\b " cannot match.

The easy solution for this contrived example is to put the !\b " befor e incr ementing
$Count, to ensur e that it is incremented only when it won’t be undone. However,
I’d like to show a solution using local, to illustrate its effect within Perl executed
during the application of a regex. With that in mind, consider this new version:

our $Count = 0;

$text =˜ m{
ˆ (?> \d+ (?{ local($Count) = $Count + 1 }) \b < \w+ < \s+)+ $
}x;

The first change to notice is that $Count changed from a my variable to a global
one (if you use strict, as I always recommend, you can’t use an unqualified
global variable unless you “declare” it with Perl’s our declarator).

The other change is that the increment of $Count has been localized. Here’s the
key behavior: when a variable is localized within a regex, the original value is
replaced (the new value is lost) if the code with the local is “unmatched” because
of backtracking. So, even though local($Count) = $Count + 1 is executed
after ‘73’ is matched by !\d+ ", changing $Count fr om one to two, that change is
“localized to the success of the path” that the regex is on when local is called.
When the !\b " fails, the regex engine logically backtracks to before the local, and
$Count reverts to its original value of one. And that’s the value it ends up having
when the end of the regex is eventually reached.

29 April 2003 20:47

Interpolating Embedded Perl
As a security measure, Perl doesn’t normally allow an embedded-code con-
struct !(?{˙˙˙}) " or a dynamic-subexpression construct !(??{˙˙˙})" to be interpo-
lated into the regex from a string variable. (They are allowed, though, from a
regex object, as with $RecordPossibleMatch on page 334.) That is,

m{ (?{ print "starting\n" }) some regex˙˙˙ }x;

is allowed, but

my $ShowStart = ’(?{ print "starting\n" })’;
+
+
+

m{ $ShowStart some regex˙˙˙ }x;

is not. This limitation is imposed because it has long been common to
include user input as part of a regex, and the introduction of these constructs
suddenly allowing such a regex to run arbitrary code creates a huge security
hole. So, the default is that it’s disallowed.

If you’d like to allow this kind of interpolation, the declaration:

use re ’eval’;

lifts the restriction. (With differ ent arguments, the use re pragma can also
be used for debugging; + 361.)

Sanitizing user input for interpolation

If you use this and do allow user input to be interpolated, be sure that it has
no embedded-Perl or dynamic-regex constructs. You can do this by checking
against !\(\s+\?+[p{] ". If this matches the input, it’s not safe to use in a
regex. The !\s+ " is needed because the /x modifier allows spaces after the
opening parentheses. (I’d think that they shouldn’t be allowed there, but
they are.) The plus quantifies !\? " so that both constructs are recognized.
Finally, the p is included to catch the now-deprecated !(?p{˙˙˙})" construct,
the forerunner of !(??{˙˙˙}) ".

I think it would be useful if Perl supported a modifier of some sort that
allowed or prohibited embedded code on a per-r egex or subexpression
basis, but until one is introduced, you’ll have to check for it yourself, as
described above.

So, local is requir ed to keep $Count consistent until the end of the regex. If we
wer e to put !(?{ print "Final count is $Count.\n" }) " at the end of the
regex, it would report the proper count. Since we want to use $Count after the
match, we need to save it to a non-localized variable at some point before the
match officially ends. This is because all values that had been localized during the
match are lost when the match finishes.

Fun with Perl Enhancements 337

29 April 2003 20:47

338 Chapter 7: Perl

Her e’s an example:

my $Count = undef;
our $TmpCount = 0;

$text =˜ m{
ˆ (?> \d+ (?{ local($TmpCount) = $TmpCount + 1 }) \b < \w+ < \s+)+ $
(?{ $Count = $TmpCount }) # Save the "ending" $Count to a non-localized variable

}x;
if (defined $Count) {

print "Count is $Count.\n";
} else {

print "no match\n";
}

This seems like a lot of work for something so simple, but again, this is a con-
trived example designed just to show the mechanics of localized variables within a
regex. We’ll see practical use in “Mimicking Named Capture” on page 344.

A War ning About Embedded Code and my Variables
If you have a my variable declared outside a regex, but refer to it from inside regex
embedded code, you must be very careful about a subtle issue with Perl’s variable
binding that has a very unsubtle impact. Before describing the issue, I’ll note up
fr ont that if you use only global variables within regex embedded code, you don’t
have to worry about this issue, and you can safely skip this section. War ning: this
section is not light reading.

This contrived example illustrates the problem:

sub CheckOptimizer
{

my $text = shift; # The first argument is the text to check.
my $start = undef; # We’ll note here wher e the regex is first applied.

my $match = $text =˜ m{
(?{ $start = $-[0] if not defined $start}) # Save the first starting position
\d # This is the regex being tested

}x;

if (not defined $start) {
print "The whole match was optimized away.\n";
if ($match) {

This can’t possibly happen!
print "Whoa, but it matched! How can this happen!?\n";

}
} elsif ($start == 0) {

print "The match start was not optimized.\n";
} else {

print "The optimizer started the match at character $start.\n"
}

}

This code has three my variables, but only one, $start, is related to this issue (the
others are not refer enced fr om within embedded code, so are not at issue). It

29 April 2003 20:47

works by first setting $start to the undefined value, then applying a match in
which the leading component is an embedded-code construct that sets $start to
the starting location of the attempt, but only if it hasn’t already been set. The
“starting location of the attempt” is derived from $-[0] (the first element of
@- + 302).

So, when this function is called with

CheckOptimizer("test 123");

the result is:

The optimizer started the match at character 5.

That’s okay, but if we invoke the exact same call again, the second time shows:

The whole match was optimized away.
Whoa, but it matched! How can this happen!?

Even though the text checked by the regex is the same (as is the regex itself, for
that matter), the result is differ ent, and seems to be wrong. Why? The problem is
that the second time through, the $start that the embedded code is updating is
the one that existed the first time through, when the regex was compiled. The
$start that the rest of the function uses is actually a new variable created afresh
when the my is executed at the start of each function call.

The key to this issue is that my variables in embedded code are “locked in”
(bound, in programming terminology) to the specific instance of the my variable
that is active at the time the regex is compiled. (Regex compilation is discussed in
detail starting on page 348.) Each time CheckOptimizer is called, a new instance
of $start is created, but for esoteric reasons, the $start inside the embedded
code still refers to the first instance that is now long gone. Thus, the instance of
$start that the rest of the function uses doesn’t receive the value ostensibly writ-
ten to it within the regex.

This type of instance binding is called a closur e, and books like Pr ogramming Perl
and Object Oriented Perl discuss why it’s a valuable feature of the language. There
is debate in the Perl community, however, as to just how much of a “feature” it is
in this case. To most people, it’s very unintuitive.

The solution is to not refer to my variables from within a regex unless you know
that the regex literal will be compiled at least as often as the my instances are
refr eshed. For example, the my variable $NestedStuffRegex is used within the
SimpleConvert subr outine in the listing on page 346, but we know this is not a
pr oblem because there’s only ever one instance of $NestedStuffRegex. Its my is
not in a function or a loop, so it’s created just once when the script is loaded, with
that same instance existing until the program ends.

Fun with Perl Enhancements 339

29 April 2003 20:47

340 Chapter 7: Perl

Matching Nested Constructs with Embedded Code
The example on page 328 shows how to match arbitrarily nested pairs using a
dynamic regex. That’s generally the easiest way to do it, but it’s instructive to see a
method using only embedded-code constructs, so I’d like to show it to you here.

The approach is simply this: keep a count of how many open parentheses we’ve
seen that have not yet been closed, and allow a closing parenthesis only if there
ar e outstanding opens. We’ll use embedded code to keep track of the count as we
match through the text, but before looking at that, let’s look at a (not yet working)
skeleton the expression:

my $NestedGuts = qr{
(?>
(?:

Stuf f not parenthesis
[ˆ()]+
An opening parenthesis
; \(
A closing parenthesis
; \)

)+
)

}x;

The atomic grouping is requir ed for efficiency, to keep the !([˙˙˙]+ ; ˙˙˙), " fr om
becoming a neverending match (+ 226) if $NestedGuts is used as part of some
larger expression that could cause backtracking. For example, if we used it as part
of m/ˆ\($NestedGuts \)$/x and applied it to ‘(this is missing the close’,
it would track and backtrack for a long time if atomic grouping didn’t prune the
redundant states.

To incorporate the counting, we need these four steps:

Ê Befor e beginning, the count must be initialized to zero:

(?{ local $OpenParens = 0 })

Ë When an open parenthesis is seen, we increment the count to indicate that
one more set of parentheses has yet to balance.

(?{ $OpenParens++ })

Ì When a close parenthesis is seen, we check the count, and if it’s currently
positive, we decrement the count to recognize that one less set remains
unbalanced. On the other hand, if the count is zero, we can’t allow the match
to continue (because the close parenthesis does not balance with an open),
so we apply !(?!) " to force failure:

(?(?{ $OpenParens }) (?{ $OpenParens-- }) ; (?!))

This uses an !(? if then < else)" conditional (+ 138), with an embedded-code
construct checking the count as the if.

29 April 2003 20:47

Í Finally, once matching has completed, we check the count to be sure it’s
zer o. If it’s not, there wer en’t enough close parentheses to balance the opens,
so we should fail:

(?(?{ $OpenParens != 0 })(?!))

Adding these items to the skeleton expression gives us:

my $NestedGuts = qr{
(?{ local $OpenParens = 0 }) # Ê Counts the number of nested opens waiting to close.
(?> # atomic-gr ouping for efficiency

(?:
Stuf f not parenthesis

[ˆ()]+
Ë An opening parenthesis
; \((?{ $OpenParens++ })
Ì Allow a closing parenthesis, if we’re expecting any
; \) (?(?{ $OpenParens != 0 }) (?{ $OpenParens-- }) ; (?!))

)+
)
(?(?{ $OpenParens != 0 })(?!)) # Í If there are any open parens left, don’t finish

}x;

This can now be used just like $LevelN on page 330.

The local is used as a precaution to isolate this regex’s use of $OpenParens fr om
any other use the global variable might have within the program. Unlike local’s
use in the previous section, it’s not needed for backtracking protection because
the atomic grouping in the regex ensures that once an alternative has been
matched, it can’t ever be “unmatched.” In this case, the atomic grouping is used for
both efficiency and to absolutely ensure that the text matched near one of the
embedded-code constructs can’t be unmatched by backtracking (which would
br eak the sync between the value of $OpenParens and the number of parentheses
actually matched).

Overloading Regex Literals
You can pre-pr ocess the literal parts of a regex literal in any way you like with
overloading. The next sections show examples.

Adding start- and end-of-word metacharacter s

Perl doesn’t support !\< " and !\>" as start- and end-of-word metacharacters, and
that’s probably because it’s rare that !\b " doesn’t suffice. However, if we wish to
have them, we can support them ourselves using overloading to replace ‘\<’ and
‘\>’ in a regex by !(?<!\w)(?=\w) " and !(?<=\w)(?!\w) ", respectively.

Fun with Perl Enhancements 341

29 April 2003 20:47

342 Chapter 7: Perl

First, we’ll create a function, say, MungeRegexLiteral, that does the desired
pr eprocessing:

sub MungeRegexLiteral($)
{

my ($RegexLiteral) = @R; # Ar gument is a string
$RegexLiteral =˜ s/\\</(?<!\\w)(?=\\w)/g; # Mimic \< as start-of-word boundary
$RegexLiteral =˜ s/\\>/(?<=\\w)(?!\\w)/g; # Mimic \> as end-of-word boundary
return $RegexLiteral; # Retur n possibly-modified string

}

When this function is passed a string like ‘˙˙˙\<˙˙˙’, it converts it and retur ns the
string ‘˙˙˙(?<!\w)(?=\w)˙˙˙’. Remember, because the replacement part of a substitu-
tion is like a double-quoted string, it needs ‘\\w’ to get ‘\w’ into the value.

Now, to install this so that it gets called automatically on each literal part of a
regex literal, we put it into a file, say MyRegexStuf f.pm, with the Perl mechanics for
overloading:

package MyRegexStuff; # Best to call the package something unique
use strict; # Good practice to always use this
use warnings; # Good practice to always use this
use overload; # Allows us to invoke Perl’s overloading mechanism
Have our regex handler installed when we’re use’d
sub import { overload::constant qr => \&MungeRegexLiteral }

sub MungeRegexLiteral($)
{

my ($RegexLiteral) = @R; # Ar gument is a string
$RegexLiteral =˜ s/\\</(?<!\\w)(?=\\w)/g; # Mimic \< as start-of-word boundary
$RegexLiteral =˜ s/\\>/(?<=\\w)(?!\\w)/g; # Mimic \> as end-of-word boundary
return $RegexLiteral; # Retur n possibly-modified string

}

1; # Standar d idiom so that a ’use’ of this file retur ns something true

If we place MyRegexStuf f.pm in the Perl library path (see PERLLIB in the Perl docu-
mentation), we can then invoke it from Perl script files in which we want the new
featur es made available. For testing, though, we can just leave it in the same direc-
tory as the test script, invoking it with:

use lib ’.’; # Look for library files in the current directory
use MyRegexStuff; # We now have our new functionality available!

+
+
+

$text =˜ s/\s+\</ /g; # Nor malize any type of whitespace before a wordbefore a word to a single space

+
+
+

We must use MyRegexStuff in any file in which we want this added support for
regex literals, but the hard work of building MyRegexStuf f.pm need be done only
once. (The new support isn’t available in MyRegexStuf f.pm itself because it doesn’t
use MyRegexStuff — something you wouldn’t want to do.)

29 April 2003 20:47

Adding support for possessive quantifier s

Let’s extend MyRegexStuf f.pm to add support for possessive quantifiers like !x++ "

(+ 140). Possessive quantifiers work like normal greedy quantifiers, except they
never give up (never “unmatch”) what they’ve matched. They can be mimicked
with atomic grouping by simply removing the final ‘+’ and wrapping everything in
atomic quotes, e.g., by changing !regex ++ " to !(?> regex +)" (+ 173).

The regex part can be a parenthesized expression, a metasequence like !\w " or
!\x{1234} ", or even just a normal character. Handling all possible cases is difficult,
so to keep the example simple for the moment, let’s concentrate on ?+, ++, or ++
quantifying only a parenthesized expression. Using $LevelN fr om page 330, we
can add

$RegexLiteral =˜ s/(\($LevelN \)[++?])\+/(?>$1)/gx;

to the MungeRegexLiteral function.

That’s it. Now, with it part of our overloaded package, we can use a regex literal
with possessive quantifiers, like this example from page 198:

$text =˜ s/"(\\.;[ˆ"])++"//; # Remove double-quoted strings

Extending this beyond just parenthesized expressions is tricky because of the vari-
ety of things that can be in a regular expression. Here’s one attempt:

$RegexLiteral =˜ s{
(
Match something that can be quantified . . .
(?: \\[\\abCdDefnrsStwWX] # \n, \w, etc.

; \\c. # \cA
; \\x[\da-fA-F]{1,2} # \xFF
; \\x\{[\da-fA-F]+\} # \x{1234}
; \\[pP]\{[ˆ{}]+\} # \p{Letter}
; \[\]?[ˆ]]+\] # "poor man’s" class
; \\\W # \+
; \($LevelN \) # (˙˙˙)
; [ˆ()++?\\] # almost anything else

)
. . . and is quantified . . .
(?: [++?] ; \{\d+(?:,\d+)?\})

)
\+ # . . . and has an extra ’+’ after the quantifier.
}{(?>$1)}gx;

The general form of this regex is the same as before: match something quantified
possessively, remove the ‘+’, and wrap the result in !(?>˙˙˙)". It’s only a half-hearted
attempt to recognize the complex syntax of Perl regular expressions. The part to
match a class is particularly needy, in that it doesn’t recognize escapes within the
class. Even worse, the basic approach is flawed because it doesn’t understand
every aspect of Perl regular expressions. For example, if faced with ‘\(blah\)++’,
it doesn’t properly ignore the opening literal parenthesis, so it thinks the !++ " is
applied to more than just !\) ".

Fun with Perl Enhancements 343

29 April 2003 20:47

344 Chapter 7: Perl

These problems can be overcome with great effort, perhaps using a technique that
car efully walks through the regex from start to finish (similar to the approach
shown in the sidebar on page 130). I’d like to enhance the part that matches a
character class, but in the end, I don’t feel it’s worth it to address the other issues,
for two reasons. The first is that the situations in which it doesn’t already work
well are fairly contrived, so just fixing the character class part is probably enough
to make it acceptable in practice. But in the end, Perl’s regex overloading currently
has a fatal flaw, discussed in the next section, which renders it much less useful
than it might otherwise be.

Problems with Regex-Literal Overloading
Regex-literal overloading can be extremely powerful, at least in theory, but unfor-
tunately, it’s not very useful in practice. The problem is that it applies to only the
literal part of a regex literal, and not the parts that are interpolated. For example,
with the code m/($MyStuff),+/ our MungeRegexLiteral function is called
twice, once with the literal part of the regex before the variable interpolation (“(”),
and once with the part after (“),+”). (It’s never even given the contents of
$MyStuff.) Since our function requir es both parts at the same time, variable inter-
polation effectively disables it.

This is less of an issue with the support for \< and \> we added earlier, since
they’r e not likely to be broken up by variable interpolation. But since overloading
doesn’t affect the contents of an interpolated variable, a string or regex object con-
taining ‘\<’ or ‘\>’ would not be processed by overloading. Also, as the previous
section touched on, when a regex literal is processed by overloading, it’s not easy
to be complete and accurate every time. Even something as simple as our support
for \> gets in the way when given ‘\\>’, ostensibly to match a ‘\’ followed by ‘>’.

Another problem is that there’s no way for the overload processing to know about
the modifiers that the regex was applied with. In particular, it may be crucial to
know whether /x was specified, but there’s currently no way to know that.

Finally, be warned that using overloading disables the ability to include characters
by their Unicode name (!\N{name}" + 290).

Mimicking Named Capture
Despite the shortcomings of overloading, I think it’s instructive to see a complex
example bringing together many special constructs. Perl doesn’t offer named cap-
tur e (+ 137), but it can be mimicked with capturing parentheses and the $ˆN vari-
able (+ 301), which refer ences the text matched by the most-recently-closed set of
capturing parentheses. (I put on the hat of a Perl developer and added $ˆN sup-
port to Perl expressly to allow named-capture to be mimicked.)

29 April 2003 20:47

As a simple example, consider:

!href\s+=\s+($HttpUrl)(?{ $url = $ˆN }) "

This uses the $HttpUrl regex object developed on page 303. The underlined part
is an embedded-code construct that saves the text matched by $HttpUrl to the
variable $url. In this simple situation, it seems overkill to use $ˆN instead of $1,
or to even use the embedded-code construct in the first place, since it seems so
easy to just use $1 after the match. But consider encapsulating part of that into a
regex object, and then using it multiple times:

my $SaveUrl = qr{
($HttpUrl) # Match an HTTP URL . . .
(?{ $url = $ˆN }) # . . . and save to $url

}x;

$text =˜ m{
http \s+=\s+ ($SaveUrl)

; src \s+=\s+ ($SaveUrl)
}xi;

Regardless of which matches, $url is set to the URL that matched. Again, in this
particular use, you could use other means (such as the $+ variable + 301), but as
$SaveUrl is used in more complex situations, the other solutions become more
dif ficult to maintain, so saving to a named variable can be much more convenient.

One problem with this example is that values written to $url ar e not “unwritten”
when the construct that wrote to them is unmatched via backtracking. So, we need
to modify a localized temporary variable during the initial match, writing to the
“r eal” variable only after an overall match has been confirmed, just as we did in
the example on page 338.

The listing on the next page shows one way to solve this. From the user’s point of
view, after using !(?< Num >\d+)", the number matched by !\d+ " is available in the
global hash %ˆN, as $ˆN{Num}. Although future versions of Perl could decide to
tur n %ˆN into a special system variable of some sort, it’s not currently special, so
we’r e fr ee to use it.

I could have chosen a name like %NamedCapture, but instead chose %ˆN for a few
reasons. One is that it’s similar to $ˆN. Another is that it’s not requir ed to be pre-
declar ed with our when used under use strict. Finally, it’s my hope that Perl
will eventually add named capture natively, and I think adding it via %ˆN would
be a fine idea. If that happens, %ˆN would likely be automatically dynamically
scoped like the rest of the regex-r elated special variables (+ 299). But as of now,
it’s a normal global variable, so is not dynamically scoped automatically.

Again, even this more-involved approach suffers from the same problems as any-
thing using regex-literal overloading, such as an incompatibility with interpolated
variables.

Fun with Perl Enhancements 345

29 April 2003 20:47

346 Chapter 7: Perl

Mimicking Named Capture
package MyRegexStuff;
use strict;
use warnings;
use overload;
sub import { overload::constant(’qr’ => \&MungeRegexLiteral) }

my $NestedStuffRegex; # This should be predeclar ed, because it’s used in its own definition.
$NestedStuffRegex = qr{
(?>

(?: # Stuf f not parens, not ’#’, and not an escape . . .
[ˆ()\#\\]+
Escaped stuff . . .

; (?s: \\.)
Regex comment . . .

; \#.+\n
Matching parens, with more nested stuff inside . . .

; \((??{ $NestedStuffRegex }) \)
)+

)
}x;

sub SimpleConvert($); # This must be predeclar ed, as it’s used recursively
sub SimpleConvert($)
{

my $re = shift; # Regex to mangle
$re =˜ s{

\(\? # "(?"
< ((?>\w+)) > # < $1 > $1 is an identifier
($NestedStuffRegex) # $2 - possibly-nested stuff

\) # ")"
}{
my $id = $1;
my $guts = SimpleConvert($2);
We change
(?<id>guts)
to
(?: (guts) # match the guts
(?{
local($ˆN{$id}) = $guts # Save to a localized element of %ˆT
})
)
"(?:($guts)(?{ local(\$ˆT{’$id’}) = \$ˆN }))"

}xeog;
return $re; # Retur n mangled regex

}

sub MungeRegexLiteral($)
{

my ($RegexLiteral) = @R; # Ar gument is a string
print "BEFORE: $RegexLiteral\n"; # Uncomment this for debugging
my $new = SimpleConvert($RegexLiteral);
if ($new ne $RegexLiteral)
{

my $before = q/(?{ local(%ˆT) = () })/; # Localize temporary hash
my $after = q/(?{ %ˆN = %ˆT })/; # Copy temp to "real" hash
$RegexLiteral = "$before(?:$new)$after";

}
print "AFTER: $RegexLiteral\n"; # Uncomment this for debugging
return $RegexLiteral;

}

1;

29 April 2003 20:47

Perl Eff icienc y Issues
For the most part, efficiency with Perl regular expressions is achieved in the same
way as with any tool that uses a Traditional NFA. Use the techniques discussed in
Chapter 6 — the internal optimizations, the unrolling methods, the “Think” section
—all apply to Perl.

Ther e ar e, of course, Perl-specific issues as well, and in this section, we’ll look at
the following topics:

• There’s More Than One Way To Do It Perl is a toolbox offering many
appr oaches to a solution. Knowing which problems are nails comes with
understanding The Perl Way, and knowing which hammer to use for any par-
ticular nail goes a long way toward making more efficient and more under-
standable programs. Sometimes efficiency and understandability seem to be
mutually exclusive, but a better understanding allows you to make better
choices.

• Regex Compilation, qr/˙˙˙/, the /o Modifier, and Efficiency The interpolation
and compilation of regex operands are fertile ground for saving time. The /o

modifier, which I haven’t discussed much yet, along with regex objects
(qr/˙˙˙/), gives you some control over when the costly re-compilation takes
place.

• The $& Penalty The three match side effect variables, $‘, $&, and $’, can be
convenient, but there’s a hidden efficiency gotcha waiting in store for any
script that uses them, even once, anywhere. Heck, you don’t even have to use
them — the entire script is penalized if one of these variables even appears in
the script.

• The Study Function Since ages past, Perl has provided the study(˙˙˙) func-
tion. Using it supposedly makes regexes faster, but it seems that no one really
understands if it does, or why. We’ll see whether we can figure it out.

• Benchmarking When it comes down to it, the fastest program is the one that
finishes first. (You can quote me on that.) Whether a small routine, a major
function, or a whole program working with live data, benchmarking is the
final word on speed. Benchmarking is easy and painless with Perl, although
ther e ar e various ways to go about it. I’ll show you the way I do it, a simple
method that has served me well for the hundreds of benchmarks I’ve done
while preparing this book.

• Perl’s Regex Debugg ing Perl’s regex-debug flag can tell you about some of
the optimizations the regex engine and transmission do, or don’t do, with your
regexes. We’ll look at how to do this and see what secrets Perl gives up.

Perl Eff icienc y Issues 347

29 April 2003 20:47

348 Chapter 7: Perl

“T here’s More Than One Way to Do It”
Ther e ar e often many ways to go about solving any particular problem, so there’s
no substitute for really knowing all that Perl has to offer when balancing efficiency
and readability. Let’s look at the simple problem of padding an IP addr ess like
‘18.181.0.24’ such that each of the four parts becomes exactly three digits:
‘018.181.000.024’. One simple and readable solution is:

$ip = sprintf("%03d.%03d.%03d.%03d", split(/\./, $ip));

This is a fine solution, but there are certainly other ways to do the job. In the
inter est of comparison, Table 7-6 examines various ways to achieve the same goal,
and their relative efficiency (they’re listed from the most efficient to the least). This
example’s goal is simple and not very interesting in and of itself, yet it repr esents a
common text-handling task, so I encourage you to spend some time understand-
ing the various approaches. You may even see some Perl techniques that are new
to you.

Each approach produces the same result when given a correct IP address, but fails
in differ ent ways if given something else. If there is any chance that the data will
be malformed, you’ll need more car e than any of these solutions provide. That
aside, the practical differ ences lie in efficiency and readability. As for readability,
#1 and #13 seem the most straightforward (although it’s interesting to see the wide
gap in efficiency). Also straightforward are #3 and #4 (similar to #1) and #8 (simi-
lar to #13). The rest all suffer from varying degrees of crypticness.

So, what about efficiency? Why are some less efficient than others? It’s the interac-
tions among how an NFA works (Chapter 4), Perl’s many regex optimizations
(Chapter 6), and the speed of other Perl constructs (such as sprintf, and the
mechanics of the substitution operator). The substitution operator’s /e modifier,
while indispensable at times, does seem to be mostly at the bottom of the list.

It’s interesting to compare two pairs, #3/#4 and #8/#14. The two regexes of each
pair differ only in their use of parentheses — the one without the parentheses is
just a bit faster than the one with. But #8’s use of $& as a way to avoid parenthe-
ses comes at a high cost not shown by these benchmarks (+ 355).

Regex Compilation, the /o Modifier, qr/˙˙˙/,
and Efficienc y
An important aspect of Perl’s regex-r elated ef ficiency relates to the setup work Perl
must do behind the scenes when program execution reaches a regex operator,
befor e actually applying the regular expression. The precise setup depends on the

29 April 2003 20:47

Table 7-6: A Few Ways to Pad an IP Addr ess

Rank Time Approach

1. 1.0× $ip = sprintf("%03d.%03d.%03d.%03d", split(m/\./, $ip));

2. 1.3× substr($ip, 0, 0) = ’0’ if substr($ip, 1, 1) eq ’.’;
substr($ip, 0, 0) = ’0’ if substr($ip, 2, 1) eq ’.’;
substr($ip, 4, 0) = ’0’ if substr($ip, 5, 1) eq ’.’;
substr($ip, 4, 0) = ’0’ if substr($ip, 6, 1) eq ’.’;
substr($ip, 8, 0) = ’0’ if substr($ip, 9, 1) eq ’.’;
substr($ip, 8, 0) = ’0’ if substr($ip, 10, 1) eq ’.’;
substr($ip, 12, 0) = ’0’ while length($ip) < 15;

3. 1.6× $ip = sprintf("%03d.%03d.%03d.%03d", $ip =˜ m/\d+/g);

4. 1.8× $ip = sprintf("%03d.%03d.%03d.%03d", $ip =˜ m/(\d+)/g);

5. 1.8× $ip = sprintf("%03d.%03d.%03d.%03d",
$ip =˜ m/ˆ(\d+)\.(\d+)\.(\d+)\.(\d+)$/);

6. 2.3× $ip =˜ s/\b(?=\d\b)/00/g;
$ip =˜ s/\b(?=\d\d\b)/0/g;

7. 3.0× $ip =˜ s/\b(\d(\d?)\b)/$2 eq ’’ ? "00$1" : "0$1"/eg;

8. 3.3× $ip =˜ s/\d+/sprintf("%03d", $&)/eg;

9. 3.4× $ip =˜ s/(?:(?<=\.);ˆ)(?=\d\b)/00/g;
$ip =˜ s/(?:(?<=\.);ˆ)(?=\d\d\b)/0/g;

10. 3.4× $ip =˜ s/\b(\d\d?\b)/’0’ x (3-length($1)) . $1/eg;

11. 3.4× $ip =˜ s/\b(\d\b)/00$1/g;
$ip =˜ s/\b(\d\d\b)/0$1/g;

12. 3.4× $ip =˜ s/\b(\d\d?\b)/sprintf("%03d", $1)/eg;

13. 3.5× $ip =˜ s/\b(\d{1,2}\b)/sprintf("%03d", $1)/eg;

14. 3.5× $ip =˜ s/(\d+)/sprintf("%03d", $1)/eg;

15. 3.6× $ip =˜ s/\b(\d\d?(?!\d))/sprintf("%03d", $1)/eg;

16. 4.0× $ip =˜ s/(?:(?<=\.);ˆ)(\d\d?(?!\d))/sprintf("%03d", $1)/eg;

type of regex operand. In the most common situation, the regex operand is a
regex literal, as with m/˙˙˙/ or s/˙˙˙/˙˙˙/ or qr/˙˙˙/. For these, Perl has to do a few
dif ferent things behind the scenes, each taking some time we’d like to avoid, if
possible. First, let’s look at what needs to be done, and then at ways we might
avoid it.

Perl Efficienc y Issues 349

29 April 2003 20:47

350 Chapter 7: Perl

The inter nal mechanics of prepar ing a regex

The behind-the-scenes work done to prepar e a regex operand is discussed gener-
ally in Chapter 6 (+ 241), but Perl has its unique twists.

Perl’s pre-pr ocessing of regex operands happens in two general phases.

1. Regex-literal processing If the operand is a regex literal, it’s processed as
described in “How Regex Literals Are Parsed” (+ 292). One of the benefits
pr ovided by this stage is variable interpolation.

2. Regex Compilation The regex is inspected, and if valid, compiled into an
inter nal for m appr opriate for its actual application by the regex engine. (If
invalid, the error is reported to the user.)

Once Perl has a compiled regex in hand, it can actually apply it to the target
string, as per Chapters 4-6.

All that pre-pr ocessing doesn’t necessarily need be done every time each regex
operator is used. It must always be done the first time a regex literal is used in a
pr ogram, but if execution reaches the same regex literal more than once (such as
in a loop, or in a function that’s called more than once), Perl can sometimes re-use
some of the previously-done work. The next sections show when and how Perl
might do this, and additional techniques available to the programmer to further
incr ease ef ficiency.

Perl steps to reduce regex compilation

In the next sections, we’ll look at two ways in which Perl avoids some of the pre-
pr ocessing associated with regex literals: unconditional caching and on-demand
recompilation.

Unconditional caching
If a regex literal has no variable interpolation, Perl knows that the regex can’t
change from use to use, so after the regex is compiled once, that compiled form is
saved (“cached”) for use whenever execution again reaches the same code. The
regex is examined and compiled just once, no matter how often it’s used during
the program’s execution. Most regular expressions shown in this book have no
variable interpolation, and so are per fectly ef ficient in this respect.

Variables within embedded code and dynamic regex constructs don’t count, as
they’r e not interpolated into the value of the regex, but rather part of the unchang-
ing code the regex executes. When my variables are refer enced fr om within
embedded code, there may be times that you wish it were interpr eted every time:
see the warning on page 338.

Just to be clear, caching lasts only as long as the program executes — nothing is
cached from one run to the next.

29 April 2003 20:47

On-demand recompilation
Not all regex operands can be cached directly. Consider this snippet:

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];
$today now holds the day ("Mon", "Tue", etc., as appropriate)

while (<LOGFILE>) {
if (m/ˆ$today:/i) {

+
+
+

The regex in m/ˆ$today:/ requir es interpolation, but the way it’s used in the loop
ensur es that the result of that interpolation will be the same every time. It would
be inefficient to recompile the same thing over and over each time through the
loop, so Perl automatically does a simple string check, comparing the result of the
interpolation against the result the last time through. If they’re the same, the
cached regex that was used the previous time is used again this time, eliminating
the need to recompile. But if the result of the interpolation turns out to be differ-
ent, the regex is recompiled. So, for the price of having to redo the interpolation
and check the result with the cached value, the relatively expensive compile is
avoided whenever possible.

How much do these features actually save? Quite a lot. As an example, I bench-
marked the cost of pre-pr ocessing thr ee for ms of the $HttpUrl example from
page 303 (using the extended $HostnameRegex). I designed the benchmarks to
show the overhead of regex pre-pr ocessing (the interpolation, string check, compi-
lation, and other background tasks), not the actual application of the regex, which
is the same regardless of how you get there.

The results are pretty interesting. I ran a version that has no interpolation (the
entir e regex manually spelled out within m/˙˙˙/), and used that as the basis of com-
parison. The interpolation and check, if the regex doesn’t change each time, takes
about 25× longer. The full pre-pr ocessing (which adds the recompilation of the
regex each time) takes about 1,000× longer! Wow.

Just to put these numbers into context, realize that even the full pre-pr ocessing,
despite being over 1,000× slower than the static regex literal pre-pr ocessing, still
takes only about 0.00026 seconds on my system. (It benchmarked at a rate of
about 3,846 per second; on the other hand, the static regex literal’s pre-pr ocessing
benchmarked at a rate of about 3.7 million per second.) Still, the savings of not
having to do the interpolation are impr essive, and the savings of not having to
recompile are down right fantastic. In the next sections, we’ll look at how you can
take action to enjoy these savings in even more cases.

Perl Eff icienc y Issues 351

29 April 2003 20:47

352 Chapter 7: Perl

The “compile once” /o modifier

Put simply, if you use the /o modifier with a regex literal operand, the regex lit-
eral will be inspected and compiled just once, regardless of whether it uses inter-
polation. If there’s no interpolation, adding /o doesn’t buy you anything because
expr essions without interpolation are always cached automatically. If there is inter-
polation, the first time execution arrives at the regex literal, the normal full pre-
pr ocessing happens, but because of /o, the internal form is cached. If execution
comes back again to the same regex operator, that cached form is used directly.

Her e’s the example from the previous page, with the addition of /o:

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

while (<LOGFILE>) {
if (m/ˆ$today:/io) {

+
+
+

This is now much more efficient because the regex ignores $today on all but the
first iteration through the loop. Not having to interpolate or otherwise pre-pr ocess
and compile the regex every time repr esents a real savings that Perl couldn’t do
for us automatically because of the variable interpolation: $today might change,
so Perl must play it safe and reinspect it each time. By using /o, we tell Perl to
“lock in” the regex after the regex literal is first pre-pr ocessed and compiled. It’s
safe to do this when we know that the variables interpolated into a regex literal
won’t change, or when we don’t want Perl to use the new values even if they do
change.

Potential “gotchas” of /o
Ther e’s an important “gotcha” to watch out for with /o. Consider putting our
example into a function:

sub CheckLogfileForToday()
{

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

while (<LOGFILE>) {
if (m/ˆ$today:/io) { #danger ous -- has a gotcha

+
+
+

}
}

}

Remember, /o indicates that the regex operand should be compiled once. The first
time CheckLogfileForToday() is called, a regex operand repr esenting the cur-
rent day is locked in. If the function is called again some time later, even though
$today may change, it will not be not inspected again; the original locked-in
regex is used every time for the duration of execution.

29 April 2003 20:47

This is a major shortcoming, but as we’ll see in the next section, regex objects pro-
vide a best-of-both-worlds way around it.

Using regex objects for efficienc y

All the discussion of pre-pr ocessing we’ve seen so far applies to regex literals. The
goal has been to end up with a compiled regex with as little work as possible.
Another approach to the same end is to use a regex object, which is basically a
ready-to-use compiled regex encapsulated into a variable. They’re created with the
qr/˙˙˙/ operator (+ 303).

Her e’s a version of our example using a regex object:

sub CheckLogfileForToday()
{

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

my $RegexObj = qr/ˆ$today:/i; # compiles once per function call

while (<LOGFILE>) {
if ($R =˜ $RegexObj) {

+
+
+

}
}

}

Her e, a new regex object is created each time the function is called, but it is then
used directly for each line of the log file. When a regex object is used as an
operand, it undergoes none of the pre-pr ocessing discussed throughout this sec-
tion. The pre-pr ocessing is done when the regex object is cr eated, not when it’s
later used. You can think of a regex object, then, as a “floating regex cache,” a
ready-to-use compiled regex that you can apply whenever you like.

This solution has the best of both worlds: it’s efficient, since only one regex is
compiled during each function call (not with each line in the log file), but, unlike
the previous example where /o was used inappropriately, this example actually
works correctly with multiple calls to CheckLogfileForToday().

Be sure to realize that there are two regex operands in this example. The regex
operand of the qr/˙˙˙/ is not a regex object, but a regex literal supplied to qr/˙˙˙/

to cr eate a regex object. The object is then used as the regex operand for the =˜

match operator in the loop.

Using m/˙˙˙/ with regex objects
The use of the regex object,

if ($R =˜ $RegexObj) {

can also be written as:

if (m/$RegexObj/) {

Perl Efficienc y Issues 353

29 April 2003 20:47

354 Chapter 7: Perl

This is not a normal regex literal, even though it looks like one. When the only
thing in the “regex literal” is a regex object, it’s just the same as using a regex
object. This is useful for several reasons. One is simply that the m/˙˙˙/ notation may
be more familiar, and perhaps more comfortable to work with. It also relieves you
fr om explicitly stating the target string $R, which makes things look better in con-
junction with other operators that use the same default. Finally, it allows you to
use the /g modifier with regex objects.

Using /o with qr/˙˙˙/
The /o modifier can be used with qr/˙˙˙/, but you’d certainly not want to in this
example. Just as when /o is used with any of the other regex operators, qr/˙˙˙/o

locks in the regex the first time it’s used, so if used here, $RegexObj would get
the same regex object each time the function is called, regardless of the value of
$today. That would be the same mistake as when we used m/˙˙˙/o on page 352.

Using the default regex for efficienc y

The default regex (+ 308) feature of regex operators can be used for efficiency,
although the need for it has mostly been eliminated with the advent of regex
objects. Still, I’ll describe it quickly. Consider:

sub CheckLogfileForToday()
{

my $today = (qw<Sun Mon Tue Wed Thu Fri Sat>)[(localtime)[6]];

Keep trying until one matches, so the default regex is set.
"Sun:" =˜ m/ˆ$today:/i or
"Mon:" =˜ m/ˆ$today:/i or
"Tue:" =˜ m/ˆ$today:/i or
"Wed:" =˜ m/ˆ$today:/i or
"Thu:" =˜ m/ˆ$today:/i or
"Fri:" =˜ m/ˆ$today:/i or
"Sat:" =˜ m/ˆ$today:/i;

while (<LOGFILE>) {
if (m//) { # Now use the default regex

+
+
+

}
}

}

The key to using the default regex is that a match must be successful for it to be
set, which is why this example goes to such trouble to get a match after $today
has been set. As you can see, it’s fairly kludgey, and I wouldn’t recommend it.

29 April 2003 20:47

Under standing the “Pre-Match” Copy
While doing matches and substitutions, Perl sometimes must spend extra time and
memory to make a pre-match copy of the target text. As we’ll see, sometimes this
copy is used in support of important features, but sometimes it’s not. When the
copy is made but not used, the wasted effort is an inefficiency we’d like to avoid,
especially in situations where the target text is very long, or speed particularly
important.

In the next sections, we’ll look at when and why Perl might make a pre-match
copy of the target text, when the copy is actually used, and how we might avoid
the copy when efficiency is at a premium.

Pre-match copy suppor ts $1, $&, $’, $+, . . .

Perl makes a pre-match copy of the original target text of a match or substitution
to support $1, $&, and the other after-match variables that actually hold text
(+ 299). After each match, Perl doesn’t actually create each of these variables
because many (or all) may never be used by the program. Rather, Perl just files
away a copy of the original text, remembers wher e in that original string the vari-
ous matches happened, and then refers to that if and when $1 or the like is actu-
ally used. This requir es less work up-front, which is good, because often, some or
all of these after-match variables are not even used. This is a form of “lazy evalua-
tion,” and successfully avoids a lot of unneeded work.

Although Perl saves work by not creating $1 and the like until they’re used, it still
has to do the work of saving the extra copy of the target text. But why does this
really need to be done? Why can’t Perl just refer to that original text to begin with?
Well, consider:

$Subject =˜ s/ˆ(?:Re:\s+)+//;

After this, $& pr operly refers to the text that was removed from $Subject, but
since it was removed fr om $Subject, Perl can’t refer to $Subject itself when pro-
viding for a subsequent use of $&. The same logic applies for something like:

if ($Subject =˜ m/ˆSPAM:(.+)/i) {
$Subject = "-- spam subject removed --";
$SpamCount{$1}++;

}

By the time $1 is refer enced, the original $Subject has been erased. Thus, Perl
must make an internal pre-match copy.

The pre-match copy is not always needed

In practice, the primary “users” of the pre-match copy are $1, $2, $3, and the like.
But what if a regex doesn’t even have capturing parentheses? If it doesn’t, there’s

Perl Efficienc y Issues 355

29 April 2003 20:47

356 Chapter 7: Perl

no need to even worry about $1, so any work needed to support it can be
bypassed. So, at least those regexes that don’t have capturing parentheses can
avoid the costly copy? Not always . . .

The var iables $‘, $&, and $’ are naughty
The three variables $‘, $&, and $’ ar en’t related to capturing parentheses. As the
text before, of, and after the match, they can potentially apply to every match and
substitution. Since it’s impossible for Perl to tell which match any particular use of
one of these variables refers to, Perl must make the pre-match copy every time.

It might sound like there’s no opportunity to avoid the copy, but Perl is smart
enough to realize that if these variables do not appear in the program, anywher e
(including in any library that might be used) the blind copying to support them is
no longer needed. Thus, ensuring that you don’t use $‘, $&, and $’ allows all
matches without capturing parentheses to dispense with the pre-match cop y — a
handsome optimization! Having even one $‘, $&, or $’ anywher e in the program
means the optimization is lost. How unsociable! For this reason, I call these three
variables “naughty.”

How expensive is the pre-match copy?

I ran a simple benchmark, checking m/c/ against each of the 130,000 lines of C
that make up the main Perl source. The benchmark noted whether a ‘c’ appear ed
on each line, but didn’t do anything further, since the goal was to determine the
ef fect of the behind-the-scenes copying. I ran the test two differ ent ways: once
wher e I made sure not to trigger the pre-match copy, and once where I made sure
to do so. The only differ ence, ther efor e, was in the extra copy overhead.

The run with the pre-match copying consistently took over 40 percent longer than
the one without. This repr esents an “average worst case,” so to speak, since the
benchmark didn’t do any “real work,” whose time would reduce the relative rele-
vance of (and perhaps overshadow) the extra overhead.

On the other hand, in true worst-case scenarios, the extra copy might truly be an
overwhelming portion of the work. I ran the same test on the same data, but this
time as one huge line incorporating the more than 3.5 megabytes of data, rather
than the 130,000 or so reasonably sized lines. Thus, the relative perfor mance of a
single match can be checked. The match without the pre-match copy retur ned
almost immediately, since it was sure to find a ‘c’ somewher e near the start of the
string. Once it did, it was finished. The test with the pre-match copy is the same
except that it had to make a copy of the huge string first. It took over 7,000 times
longer! Knowing the ramifications, therefor e, of certain constructs allows you to
tweak your code for better efficiency.

29 April 2003 20:47

Avoiding the pre-match copy

It would be nice if Perl knew the programmer’s intentions and made the copy
only as necessary. But remember, the copies are not “bad” — Perl’s handling of
these bookkeeping drudgeries behind the scenes is why we use it and not, say, C
or assembly language. Indeed, Perl was first developed in part to free users from
the mechanics of bit fiddling so they could concentrate on creating solutions to
pr oblems.

Never use naughty var iables. Still, it’s nice to avoid the extra work if possible.
For emost, of course, is to never use $‘, $&, or $’ anywher e in your code. Often,
$& is easy to eliminate by wrapping the regex with capturing parentheses, and
using $1 instead. For example, rather than using s/<\w+>/\L$&\E/g to lowercase
certain HTML tags, use s/(<\w+>)/\L$1\E/g instead.

$‘ and $’ can often be easily mimicked if you still have an unmodified copy of
the original target string. After a match against a given tar get, the following shows
valid replacements:

Variable Mimicked with

$‘ substr(tar get, 0, $-[0])

$& substr(tar get, $-[0], $+[0] - $-[0])

$’ substr(tar get, $+[0])

Since @- and @+ (+ 302) are arrays of positions in the original target string, rather
than actual text in it, they can be safely used without an efficiency penalty.

I’ve included a substitute for $& in there as well. This may be a better alternative
to wrapping with capturing parentheses and using $1, as it may allow you to elim-
inate capturing parentheses altogether. Remember, the whole point of avoiding $&

and friends is to avoid the copy for matches that have no capturing parentheses. If
you make changes to your program to eliminate $&, but end up adding capturing
par entheses to every match, you haven’t saved anything.

Don’t use naughty modules. Of course, part of not using $‘, $&, or $’ is to not
use modules that use them. The core modules that come with Perl do not use
them, except for the English module. If you wish to use that module, you can
have it not apply to these three variables by invoking it as:

use English ’-noRmatchRvars’;

This makes it safe. If you download modules from CPAN or elsewhere, you may
wish to check to see if they use the variables. See the sidebar on the next page for
a technique to check to see if your program is infected with any of these variables.

Perl Eff icienc y Issues 357

29 April 2003 20:47

358 Chapter 7: Perl

How to Check Whether Your Code is Tainted by $&
It’s not always easy to notice whether your program is naughty (refer ences
$&, $‘, or $’), especially with the use of libraries, but there are several ways
to find out. The easiest, if your perl binary has been compiled with the
-DDEBUGGING option, is to use the -c and -Mre=debug command-line argu-
ments (+ 361) and look toward the end of the output for a line that says
either ‘Enabling $‘ $& $’ support’ or ‘Omitting $‘ $& $’ support’. If it’s
enabled, the code is tainted.

It’s possible (but unlikely) that the code could be tainted by the use of a
naughty variable within an eval that’s not known to Perl until it’s executed.
One option to catch those as well is to install the Devel::SawAmpersand
package from CPAN (http://www.cpan.org):

END {
require Devel::SawAmpersand;
if (Devel::SawAmpersand::sawampersand) {

print "Naughty variable was used!\n";
}

}

Included with Devel::SawAmpersand comes Devel::FindAmpersand, a
package that purportedly shows you where the offending variable is located.
Unfortunately, it doesn’t work reliably with the latest versions of Perl. Also,
they both have some installation issues, so your mileage may vary. (Check
http://regex.info/ for possible updates.)

Also, it may be interesting to see how you can check for naughtiness by just
checking for the perfor mance penalty:

use Time::HiRes;
sub CheckNaughtiness()
{

my $text = ’x’ x 10R000; # Cr eate some non-small amount of data.

Calculate the overhead of a do-nothing loop.
my $start = Time::HiRes::time();
for (my $i = 0; $i < 5R000; $i++) { }
my $overhead = Time::HiRes::time() - $start;

Now calculate the time for the same number of simple matches.
$start = Time::HiRes::time();
for (my $i = 0; $i < 5R000; $i++) { $text =˜ m/ˆ/ }
my $delta = Time::HiRes::time() - $start;

A dif ferential of 5 is just a heuristic.
printf "It seems your code is %s (overhead=%.2f, delta=%.2f)\n",
($delta > $overhead+5) ? "naughty" : "clean", $overhead, $delta;

}

29 April 2003 20:47

The Study Function
In contrast to optimizing the regex itself, study(˙˙˙) optimizes certain kinds of
searches of a string. After studying a string, a regex (or multiple regexes) can ben-
efit from the cached knowledge when applied to the string. It’s generally used
like this:

while (<>)
{

study($R); # Study the default target $_ before doing lots of matches on it
if (m/regex 1/) { ˙˙˙ }
if (m/regex 2/) { ˙˙˙ }
if (m/regex 3/) { ˙˙˙ }
if (m/regex 4/) { ˙˙˙ }

}

What study does is simple, but understanding when it’s a benefit can be quite dif-
ficult. It has no effect whatsoever on any values or results of a program — the only
ef fects ar e that Perl uses more memory, and that overall execution time might
incr ease, stay the same, or (here’s the goal) decrease.

When a string is studied, Perl takes some time and memory to build a list of places
in the string that each character is found. (On most systems, the memory requir ed
is four times the size of the string). study’s benefit can be realized with each sub-
sequent regex match against the string, but only until the string is modified. Any
modification of the string invalidates the study list, as does studying a differ ent
string.

How helpful it is to have the target string studyied is highly dependent on the
regex matching against it, and the optimizations that Perl is able to apply. For
example, searching for literal text with m/foo/ can see a huge speedup due to
study (with large strings, speedups of 10,000× are possible). But, if /i is used,
that speedup evaporates, as /i curr ently removes the benefit of study (as well as
some other optimizations).

When not to use study

• Don’t use study on strings you intend to check only with /i, or when all lit-
eral text is governed by !(?i) " or !(?i:˙˙˙)", as these disable the benefits of
study.

• Don’t use study when the target string is short. In such cases, the normal
fixed-string cognizance optimization should suffice (+ 247). How short is
“short”? String length is just one part of a large, hard-to-pin-down mix, so
when it comes down to it, only benchmarking your expr essions on your data
will tell you if study is a benefit. But for what it’s worth, I generally don’t
even consider study unless the strings are at least several kilobytes long.

Perl Efficienc y Issues 359

29 April 2003 20:47

360 Chapter 7: Perl

• Don’t use study when you plan only a few matches against the target string
befor e it’s modified, or before you study a dif ferent string. An overall
speedup is more likely if the time spent to study a string is amortized over
many matches. With just a few matches, the time spent building the study list
can overshadow any savings.

• Use study only on strings that you intend to search with regular expressions
having “exposed” literal text (+ 255). Without a known character that must
appear in any match, study is useless. (Along these lines, one might think
that study would benefit the index function, but it doesn’t seem to.)

When study can help

study is best used when you have a large string you intend to match many times
befor e the string is modified. A good example is a filter I use in the preparation of
this book. I write in a home-grown markup that the filter converts to SGML (which
is then converted to tr off, which is then converted to PostScript). Within the filter,
an entire chapter eventually ends up within one huge string (for instance, this
chapter is about 475KB). Before exiting, I apply a bevy of checks to guard against
mistaken markup leaking through. These checks don’t modify the string, and they
often look for fixed strings, so they’re what study thrives on.

Benchmarking
If you really care about efficiency, it may be best to try benchmarking. Perl comes
standard with the Benchmark module, which has fine documentation (“perldoc
Benchmark”). Perhaps more out of habit than anything else, I tend to write my
benchmarks from scratch. After

use Time::HiRes ’time’;

I wrap what I want to test in something simple like:

my $start = time;
+
+
+

my $delta = time - $start;
printf "took %.1f seconds\n", $delta;

Important issues with benchmarking include making sure to benchmark enough
work to show meaningful times, and to benchmark as much of the work you want
to measure while benchmarking as little of the work you don’t. This is discussed
in more detail in Chapter 6 (+ 232). It might take some time to get used to bench-
marking in a reasonable way, but the results can be quite enlightening and
rewarding.

29 April 2003 20:47

Regex Debugg ing Infor mation
Perl carries out a phenomenal number of optimizations to try to arrive at a match
result quickly; some of the less esoteric ones are listed in Chapter 6’s “Common
Optimizations” (+ 239), but there are many more. Most optimizations apply to
only very specific cases, so any particular regex benefits from only some (or none)
of them.

Perl has debugging modes that tell you about some of the optimizations. When a
regex is first compiled, Perl figures out which optimizations go with the regex, and
the debugging mode reports on some of them. The debugging modes can also tell
you a lot about how the engine actually applies that expression. A detailed analy-
sis of this debugging information is beyond the scope of even this book, but I’ll
pr ovide a short introduction here.

You can turn on the debugging information by putting use re ’debug’; in your
code, and you can turn it back off with no re ’debug’;. (We’ve seen this use

re pragma before, with differ ent arguments, to allow embedded code in interpo-
lated variables + 337.)

Alter natively, if you want to turn it on for the entire script, you can use the
-Mre=debug command-line argument. This is particularly useful just for inspecting
how a single regex is compiled. Here’s an example (edited to remove some lines
that are not of interest):

Ê % perl -cw -Mre=debug -e ’m/ˆSubject: (.,)/’
Ë Compiling REx ‘ˆSubject: (.+)’
Ì rarest char j at 3
Í 1: BOL(2)
Î 2: EXACT <Subject: >(6)

+
+
+

Ï 12: END(0)
Ð anchored ‘Subject: ’ at 0 (checking anchored) anchored(BOL) minlen 9
Ñ Omitting $‘ $& $’ support.

At Ê , I invoke perl at my shell prompt, using the command-line flags -c (which
means to check the script, but don’t actually execute it), -w (issue warnings about
things Perl thinks are dubious — always used as a matter of principle), and
-Mre=debug to turn on regex debugging. The -e flag means that the following
argument, ‘m/ˆSubject: (.+)/’, is actually a mini Perl program to be run or
checked.

Line Ì reports the “rarest” character (the least common, as far as Perl guesses)
fr om among those in the longest fixed substring part of the regex. Perl uses this
for some optimizations (such as pre-check of requir ed character/substring + 244).

Perl Efficienc y Issues 361

29 April 2003 20:47

362 Chapter 7: Perl

Lines Í thr ough Ï repr esents Perl’s compiled form of the regex. For the most
part, we won’t be concerned much about it here. However, in even a casual look,
line Î sticks out as understandable.

Line Ð is where most of the action is. Some of the information that might be
shown here includes:

anchored ‘string’ at of fset
Indicates that any match must have the given string, starting of fset characters
fr om the start of the match. If ‘$’ is shown immediately after ‘string’, the
string also ends the match.

floating ‘string’ at fr om..to
Indicates that any match must have the given string, but that it could start any-
wher e fr om fr om characters into the match, to to characters. If ‘$’ is shown
immediately after ‘string’, the string also ends the match.

stclass ‘list’
Shows the list of characters with which a match can begin.

anchored(MBOL), anchored(BOL), anchored(SBOL)
The regex leads with !ˆ ". The MBOL version appears when the /m modifier is
used, while BOL and SBOL appear when it’s is not used. (The differ ence
between BOL and SBOL is not relevant for modern Perl. SBOL relates to the
regex-r elated $+ variable, which has long been deprecated.)

anchored(GPOS)

The regex leads with !\G ".

implicit

The anchored(MBOL) is an implicit one added by Perl because the regex
begins with ! .+ ".

minlen length
Any match is at least length characters long.

with eval

The regex has !(?{˙˙˙}) " or !(??{˙˙˙})".

Line Ñ is not related to any particular regex, and appears only if your perl binary
has been compiled with -DDEBUGGING tur ned on. With it, after loading the whole
pr ogram, Perl reports if support for $& and friends has been enabled (+ 356).

Run-time debugging infor mation

We’ve already seen how we can use embedded code to get information about
how a match progr esses (+ 331), but Perl’s regex debugging can show much
mor e. If you omit the -c compile-only option, Perl displays quite a lot of informa-
tion detailing just how each match progr esses.

29 April 2003 20:47

If you see “Match rejected by optimizer,” it means that one of the optimizations
enabled the transmission to realize that the regex could never match the target
text, and so the application is bypassed altogether. Her e’s an example:

% perl -w -Mre=debug -e ’"this is a test" =˜ m/ˆSubject:/;’
+
+
+

Did not find anchored substr ‘Subject:’˙˙˙

Match rejected by optimizer

When debugging is turned on, you’ll see the debugging information for any regu-
lar expressions that are used, not necessarily just your own. For example

% perl -w -Mre=debug -e ’use warnings’
. . . lots of debugging information . . .

+
+
+

does nothing more than load the warnings module, but because that module has
regular expressions, you see a lot of debugging information.

Other ways to invoke debugg ing messages

I’ve mentioned that you can use “use re ’debug’;” or -Mre=debug to turn on
regex debug information. However, if you use debugcolor instead of debug with
either of these, and if you are using a terminal that understands ANSI ter minal con-
tr ol escape sequences, the information is shown with highlighting that makes the
output easier to read.

Another option is that if your perl binary has been compiled with extra debugging
support turned on, you can use the -Dr command-line flag as a shorthand for
-Mre=debug.

Final Comments
I’m sure it’s obvious that I’m quite enamored with Perl’s regular expressions, and
as I noted at the start of the chapter, it’s with good reason. Larry Wall, Perl’s cre-
ator, appar ently let himself be ruled by common sense and the Mother of Inven-
tion. Yes, the implementation has its warts, but I still allow myself to enjoy the
delicious richness of the regex language and the integration with the rest of Perl.

However, I’m not a blind fanatic—Perl does not offer features that I wish for. Since
several of the features I pined for in the first edition of this book were eventually
added, I’ll go ahead and wish for more her e. The most glaring omission offer ed by
other implementations is named capture (+ 137). This chapter offers a way to
mimic them, but with severe restrictions; it would be much nicer if they were built
in. Class set operations (+ 123) would also be very nice to have, even though with
some effort, they can already be mimicked with lookaround (+ 124).

Final Comments 363

29 April 2003 20:47

364 Chapter 7: Perl

Then there are possessive quantifiers (+ 140). Perl has atomic grouping, which
of fers mor e overall functionality, but still, possessive quantifiers offer a clearer,
mor e elegant solution in some situations. So, I’d like both notations. In fact, I’d
also like two related constructs that no flavor currently offers. One is a simple
“cut” operator, say !\v ", which would immediately flush any saved states that cur-
rently exist (with this, !x+\v " would be the same as the possessive !x++ " or the
atomic grouping !(?>x+) "). The other related construct I’d like would take the addi-
tional step of prohibiting any further bump-alongs by the transmission. It would
mean “either a match is found from the current path I’m on, or no match will be
allowed, period.” Perhaps !\V " would be a good notation for that.

Somewhat related to my idea for !\V ", I think that it would be useful to somehow
have general hooks into the transmission. This would make it easier to do what
we did on page 335.

Finally, as I mentioned on page 337, I think it would be nice to have more contr ol
over when embedded code can be interpolated into a regex.

Perl is not the ideal regex-wielding language, but it is very close, and is always
getting better. In fact, as this book is going to print, Larry Wall is forging ahead on
the design of Perl 6, including a recently-r eleased paper describing his radical new
ideas for the future of regular expressions. It will still be some while before Perl 6
is a reality, but the future certainly looks exciting.

29 April 2003 20:47

