
8
Ja va

Java didn’t come with a regex package until Java 1.4, so early programmers had to
do without regular expressions. Over time, many programmers independently
developed Java regex packages of varying degrees of quality, functionality, and
complexity. With the early-2002 release of Java 1.4, Sun entered the fray with their
java.util.regex package. In preparing this chapter, I looked at Sun’s package,
and a few others (detailed starting on page 372). So which one is best? As you’ll
soon see, there can be many ways to judge that.

In This Chapter Befor e looking at what’s in this chapter, it’s important to mention
what’s not in this chapter. In short, this chapter doesn’t restate everything from
Chapters 1 through 6. I understand that some readers interested only in Java may
be inclined to start their reading with this chapter, and I want to encourage them
not to miss the benefits of the preface and the earlier chapters: Chapters 1, 2,
and 3 introduce basic concepts, features, and techniques involved with regular
expr essions, while Chapters 4, 5, and 6 offer important keys to regex understand-
ing that directly apply to every Java regex package that I know of.

As for this chapter, it has several distinct parts. The first part, consisting of “Judging
a Regex Package” and “Object Models,” looks abstractly at some concepts that help
you to understand an unfamiliar package more quickly, and to help judge its suit-
ability for your needs. The second part, “Packages, Packages, Packages,” moves
away from the abstract to say a few words about the specific packages I looked at
while researching this book. Finally, we get to the real fun, as the third part talks
in specifics about two of the packages, Sun’s java.util.regex and Jakarta’s ORO

package.

365

29 April 2003 20:54

366 Chapter 8: Java

Judg ing a Regex Package
The first thing most people look at when judging a regex package is the regex fla-
vor itself, but there are other technical issues as well. On top of that, “political”
issues like source code availability and licensing can be important. The next sec-
tions give an overview of some points of comparison you might use when select-
ing a regex package.

Technical Issues
Some of the technical issues to consider are:

• Eng ine Type? Is the underlying engine an NFA or DFA? If an NFA, is it a POSIX

NFA or a Traditional NFA? (See Chapter 4 + 143)

• Rich Flavor? How full-featured is the flavor? How many of the items on
page 113 are supported? Are they supported well? Some things are mor e
important than others: lookaround and lazy quantifiers, for example, are mor e
important than possessive quantifiers and atomic grouping, because look-
ar ound and lazy quantifiers can’t be mimicked with other constructs, whereas
possessive quantifiers and atomic grouping can be mimicked with lookahead
that allows capturing parentheses.

• Unicode Support? How well is Unicode supported? Java strings support Uni-
code intrinsically, but does !\w " know which Unicode characters are “word”
characters? What about !\d " and !\s "? Does !\b " understand Unicode? (Does its
idea of a word character match !\w "’s idea of a word character?) Are Unicode
pr operties supported? How about blocks? Scripts? (+ 119) Which version of
Unicode’s mappings do they support: Version 3.0? Version 3.1? Version 3.2?
Does case-insensitive matching work properly with the full breadth of Uni-
code characters? For example, does a case-insensitive ‘ß’ really match ‘SS’?
(Even in lookbehind?)

• How Flexible? How flexible are the mechanics? Can the regex engine deal
only with String objects, or the whole breadth of CharSequence objects? Is it
easy to use in a multi-threaded environment?

• How Convenient? The raw engine may be powerful, but are ther e extra
“convenience functions” that make it easy to do the common things without a
lot of cumbersome overhead? Does it, borrowing a quote from Perl, “make the
easy things easy, and the hard things possible?”

• JRE Requirements? What version of the JRE does it requir e? Does it need the
latest version, which many may not be using yet, or can it run on even an old
(and perhaps more common) JRE?

29 April 2003 20:54

• Ef ficient? How efficient is it? The length of Chapter 6 tells you how much
ther e is to be said on this subject. How many of the optimizations described
ther e does it do? Is it efficient with memory, or does it bloat over time? Do
you have any control over resource utilization? Does it employ lazy evaluation
to avoiding computing results that are never actually used?

• Does it Work? When it comes down to it, does the package work? Are ther e
a few major bugs that are “deal-br eakers?” Ar e ther e many little bugs that
would drive you crazy as you uncover them? Or is it a bulletproof, rock-solid
package that you can rely on?

Of course, this list just the tip of the iceberg — each of these bullet points could be
expanded out to a full chapter on its own. We’ll touch on them when comparing
packages later in this chapter.

Social and Political Issues
Some of the non-technical issues to consider are:

• Documented? Does it use Javadoc? Is the documentation complete? Correct?
Appr oachable? Understandable?

• Maintained? Is the package still being maintained? What’s the turnar ound
time for bugs to be fixed? Do the maintainers really care about the package? Is
it being enhanced?

• Suppor t and Popular ity? Is there official support, or an active user community
you can turn to for reliable support (and that you can provide support to,
once you become skilled in its use)?

• Ubiquity? Can you assume that the package is available everywhere you go,
or do you have to include it whenever you distribute your programs?

• Licensing? May you redistribute it when you distribute your programs? Are
the terms of the license something you can live with? Is the source code avail-
able for inspection? May you redistribute modified versions of the source
code? Must you?

Well, there are certainly a lot of questions. Although this book can give you the
answers to some of them, it can’t answer the most important question: which is
right for you? I make some recommendations later in this chapter, but only you
can decide which is best for you. So, to give you more backgr ound upon which to
base your decision, let’s look at one of the most basic aspects of a regex package:
its object model.

Judg ing a Regex Package 367

29 April 2003 20:54

368 Chapter 8: Java

Object Models
When looking at differ ent regex packages in Java (or in any object-oriented lan-
guage, for that matter), it’s amazing to see how many differ ent object models are
used to achieve essentially the same result. An object model is the set of class
structur es thr ough which regex functionality is provided, and can be as simple as
one object of one class that’s used for everything, or as complex as having sepa-
rate classes and objects for each sub-step along the way. There is not an object
model that stands out as the clear, obvious choice for every situation, so a lot of
variety has evolved.

A Few Abstract Object Models
Stepping back a bit now to think about object models helps prepar e you to more
readily grasp an unfamiliar package’s model. This section presents several repr e-
sentative object models to give you a feel for the possibilities without getting
mir ed in the details of an actual implementation.

Starting with the most abstract view, here are some tasks that need to be done in
using a regular expression:

Setup . . .

Ê Accept a string as a regex; compile to an internal form.

Ë Associate the regex with the target text.
Actually apply the regex . . .

Ì Initiate a match attempt.
See the results . . .

Í Lear n whether the match is successful.

Î Gain access to further details of a successful attempt.

Ï Query those details (what matched, where it matched, etc.).

These are the steps for just one match attempt; you might repeat them from Ì to
find the next match in the target string.

Now, let’s look at a few potential object models from among the infinite variety
that one might conjure up. In doing so, we’ll look at how they deal with matching
!\s+(\d+) " to the string ‘May 16, 1998’ to find out that ‘ 16’ is matched overall,
and ‘16’ matched within the first set of parentheses (within “group one”). Remem-
ber, the goal here is to mer ely get a general feel for some of the issues at hand —
we’ll see specifics soon.

29 April 2003 20:54

An “all-in-one” model

In this conceptual model, each regular expression becomes an object that you
then use for everything. It’s shown visually in Figure 8-1 below, and in pseudo-
code here, as it processes all matches in a string:

DoEverythingObj myRegex = new DoEverythingObj("\\s+(\\d+)"); // Ê
+
+
+

while (myRegex.findMatch("May 16, 1998")) { // Ë, Ì, Í
String matched = myRegex.getMatchedText(); // Ï
String num = myRegex.group(1); // Ï

+
+
+

}

As with most models in practice, the compilation of the regex is a separate step,
so it can be done ahead of time (perhaps at program startup), and used later, at
which point most of the steps are combined together, or are implicit. A twist on
this might be to clone the object after a match, in case the results need to be saved
for a while.

"\\s+(\\d+)"

Do-
Everything

Object

Matched text?

"16"

True or False

Constructor

" 16"

regex string literal

Group 1 text?

1

4
6

6
"May 16, 1998" Matches?

32

Figur e 8-1: An “all-in-one” model

Object Models 369

29 April 2003 20:54

370 Chapter 8: Java

A “match state” model

This conceptual model uses two objects, a “Pattern” and a “Matcher.” The Pattern
object repr esents a compiled regular expression, while the Matcher object has all
of the state associated with applying a Pattern object to a particular string. It’s
shown visually in Figure 8-2 below, and its use might be described as: “Convert a
regex string to a Pattern object. Give a target string to the Pattern object to get a
Matcher object that combines the two. Then, instruct the Matcher to find a match,
and query the Matcher about the result.” Her e it is in pseudo-code:

PatternObj myPattern = new PatternObj("\\s+(\\d+)"); // Ê
+
+
+

MatcherObj myMatcher = myPattern.MakeMatcherObj("May 16, 1998"); // Ë
while (myMatcher.findMatch()) { // Ì, Í

String matched = myMatcher.getMatchedText(); // Ï
String num = myMatcher.Group(1); // Ï

+
+
+

}

This might be considered conceptually cleaner, since the compiled regex is in an
immutable (unchangeable) object, and all state is in a separate object. However,
it’s not necessarily clear that the conceptual cleanliness translates to any practical
benefit. One twist on this is to allow the Matcher to be reset with a new target
string, to avoid having to make a new Matcher with each string checked.

1

6

"\\s+(\\d+)"

Match
State
Object

Constructor

Regex
Object 2

True or False 4

Matched text?

" 16"

"16"

6

Associate "May 16, 1998"

3

regex string literal

Find match Group 1 text?

Figur e 8-2: A “match state” model

29 April 2003 20:54

A “match result” model

This conceptual model is similar to the “all-in-one” model, except that the result of
a match attempt is not a Boolean, but rather a Result object, which you can then
query for the specifics on the match. It’s shown visually in Figure 8-3 below, and
might be described as: “Convert a regex string to a Pattern object. Give it a target
string and receive a Result object upon success. You can then query the Result
object for specific.” Her e’s one way it might be expressed it in pseudo-code:

PatternObj myPattern = new PatternObj("\\s+(\\d+)"); // Ê
+
+
+

ResultObj myResult = myPattern.findFirst("May 16, 1998"); // Ë, Ì, Î
while (myResult.wasSuccessful()) { // Í

String matched = myResult.getMatchedText(); // Ï
String num = myResult.Group(1); // Ï

+
+
+

myResult = myPattern.findNext(); Ì, Î
}

This compartmentalizes the results of a match, which might be convenient at
times, but results in extra overhead when only a simple true/false result is desired.
One twist on this is to have the Pattern object retur n null upon failure, to save
the overhead of creating a Result object that just says “no match.”

1

6 6 6' 6'

4 5

Next match?

"\\s+(\\d+)"

Constructor

Regex
Object

Result
Object

Result
Object

"1998"" 16" " 1998""16"

regex string literal

3'

Group 1 text?
Group 1 text? Matched text?

Matched text?

"May 16, 1998" Matches?

32

4' 5'

Figur e 8-3: A “match result” model

Object Models 371

29 April 2003 20:54

372 Chapter 8: Java

Growing Complexity
These conceptual models are just the tip of the iceberg, but give you a feel for
some of the differ ences you’ll run into. They cover only simple matches — when
you bring in search-and-r eplace, or perhaps string splitting (splitting a string into
substrings separated by matches of a regex), it can become much more complex.

Thinking about search-and-r eplace, for example, the first thought may well be that
it’s a fairly simple task, and indeed, a simple “replace this with that” inter face is
easy to design. But what if the “that” needs to depend on what’s matched by the
“this,” as we did many times in examples in Chapter 2 (+ 67). Or what if you need
to execute code upon every match, using the resulting text as the replacement?
These, and other practical needs, quickly complicate things, which further
incr eases the variety among the packages.

Packages, Packages, Packages
Ther e ar e many regex packages for Java; the list that follows has a few words
about those that I investigated while researching this book. (See this book’s web
page, http://regex.info/, for links). The table on the facing page gives a super-
ficial overview of some of the differ ences among their flavors.

Sun
java.util.regex Sun’s own regex package, finally standard as of Java 1.4.
It’s a solid, actively maintained package that provides a rich Perl-like flavor. It
has the best Unicode support of these packages. It provides all the basic func-
tionality you might need, but has only minimal convenience functions. It
matches against CharSequence objects, and so is extremely flexible in that
respect. Its documentation is clear and complete. It is the all-around fastest of
the engines listed here. This package is described in detail later in this chapter.
Version Tested: 1.4.0.
License: comes as part of Sun’s JRE. Source code is available under SCSL (Sun

Community Source Licensing)

IBM
com.ibm.regex This is IBM’s commercial regex package (although it’s said to
be similar to the org.apache.xerces.utils.regex package, which I did not
investigate). It’s actively maintained, and provides a rich Perl-like flavor,
although is somewhat buggy in certain areas. It has very good Unicode sup-
port. It can match against char[], CharacterIterator, and String. Overall,
not quite as fast as Sun’s package, but the only other package that’s in the
same class.
Version Tested: 1.0.0.
License: commercial product

29 April 2003 20:54

Table 8-1: Super ficial Overview of Some Java Package Flavor Differ ences

Feature Sun IBM ORO JRegex Pat GNU Regexp

Basic Functionality

Engine type NFA NFA NFA NFA NFA POSIX NFA NFA

Deeply-nested parens 3 3 3 3 3 3

dot doesn’t match: various various \n \n , \r \n \r\n \n

\s includes [\t\r\n\f] 3 3 3 3 3

\w includes underscore 3 3 3 3 3 3

Class set operators 3

POSIX [[:˙˙˙:]] 3

Metacharacter Support

\A,\z,\Z \A,\Z \A,\z,\Z \A,\z,\Z \A,\z,\Z \A,\Z \A,\Z

\G 3 3 7 3

(?#˙˙˙) 3 3 3 3 3

Octal escapes 3 3 3 3 3

2-, 4-, 6-digit hex escapes 2, 4 2, 4, 6 2 2, 4, 6 2 2, 4

Lazy quantifiers 3 3 3 3 3 3 3

Atomic grouping 3 3

Possessive quantifiers 3

Word boundaries \b \b \b \< \b \> \b \< \> 7

Non-word boundaries 3 3 3 3 7 7

\Q˙˙˙\E 3 7

(if then;else) conditional 3 3

Non-capturing parens 3 3 3 3 3 3

Lookahead 3 3 3 3 3 3

Lookbehind 3 7 3

(?mod) 3 7 3 3 3

(?-mod:˙˙˙) 3 7 3 3 7

(?mod:˙˙˙) 3 7 3 3

Unicode-Aware Metacharacter s

Unicode properties 3 3 3

Unicode blocks 3 3 3

dot, ˆ, $ 3 3

\w 3 3 3 3 3

\d 3 3 3 3 3

\s 3 3

Word boundaries 3 3 3 3 7 3 3

3 - supported - partial support 7 - supported, but buggy (Version info +372)

Packages, Packages, Packages 373

29 April 2003 20:54

374 Chapter 8: Java

ORO
org.apache.oro.text.regex The Apache Jakarta project has two unrelated
regex packages, one of which is “Jakarta-ORO.” It actually contains multiple
regex engines, each targeting a differ ent application. I looked at one engine,
the very popular Perl5Compiler matcher. It’s actively maintained, and solid,
although its version of a Perl-like flavor is much less rich than either the Sun or
the IBM packages. It has minimal Unicode support. Overall, the regex engine is
notably slower than most other packages. Its !\G " is broken. It can match against
char[] and String.

One of its strongest points is that it has a vast, modular structure that exposes
almost all of the mechanics that surround the engine (the transmission, search-
and-r eplace mechanics, etc.) so advanced users can tune it to suit their needs,
but it also comes replete with a fantastic set of convenience functions that
makes it one of the easiest packages to work with, particularly for those com-
ing from a Perl background (or for those having read Chapter 2 of this book).
This is discussed in more detail later in this chapter.

Version Tested: 2.0.6.
License: ASL (Apache Software License)

JRegex
jregex Has the same object model as Sun’s package, with a fairly rich Perl-
like feature set. It has good Unicode support. Its speed places it is in the mid-
dle of the pack.
Version Tested: v1.01
License: GNU-like

Pat
com.stevesoft.pat It has a fairly rich Perl-like flavor, but no Unicode sup-
port. Very haphazard interface. It has provisions for modifying the regex flavor
on the fly. Its speed puts it on the high end of the middle of the pack.
Version Tested: 1.5.3
License: GNU LGPL (GNU Lesser General Public License)

GNU
gnu.regexp The more advanced of the two “GNU regex packages” for Java.
(The other, gnu.rex, is a very small package providing only the most bare-
bones regex flavor and support, and is not covered in this book.) It has some
Perl-like features, and minimal Unicode support. It’s very slow. It’s the only
package with a POSIX NFA (although its POSIXness is a bit buggy at times).
Version Tested: 1.1.4
License: GNU LGPL (GNU Lesser General Public License)

29 April 2003 20:54

Regexp
org.apache.regexp This is the other regex package under the umbrella of
the Apache Jakarta project. It’s somewhat popular, but quite buggy. It has the
fewest features of the packages listed here. Its overall speed is on par with
ORO. Not actively maintained. Minimal Unicode support.
Version Tested: 1.2
License: ASL (Apache Software License)

Why So Many “Perl5” Flavors?
The list mentions “Perl-like” fairly often; the packages themselves advertise “Perl5
support.” When version 5 of Perl was released in 1994 (+ 89), it introduced a new
level of regular-expr ession innovation that others, including Java regex developers,
could well appreciate. Perl’s regex flavor is powerful, and its adoption by a wide
variety of packages and languages has made it somewhat of a de facto standard.

However, of the many packages, programs, and languages that claim to be “Perl5
compliant,” none truly are. Even Perl itself differs from version to version as new
featur es ar e added and bugs are fixed. Some of the innovations new with early 5.x
versions of Perl were non-capturing parentheses, lazy quantifiers, lookahead,
inline mode modifiers like !(?i)", and the /x fr ee-spacing mode (all discussed in
Chapter 3). Packages supporting only these features claim a “Perl5” flavor, but miss
out on later innovations, such as lookbehind, atomic grouping, and conditionals.

Ther e ar e also times when a package doesn’t limit itself to only “Perl5” enhance-
ments. Sun’s package, for example, supports possessive quantifiers, and both Sun
and IBM support character class set operations. Pat offers an innovative way to do
lookbehind, and a way to allow matching of simple arbitrarily nested constructs.

Lies, Damn Lies, and Benchmarks
It’s probably a common twist on Sam Clemens’ famous “lies, damn lies, and statis-
tics” quote, but when I saw its use with “benchmarks” in a paper from Sun while
doing research for this chapter, I knew it was an appropriate introduction for this
section. In researching these seven packages, I’ve run literally thousands of bench-
marks, but the only fact that’s clearly emerged is that there are no clear
conclusions.

Ther e ar e several things that cloud regex benchmarking with Java. First, there are
language issues. Recall the benchmarking discussion from Chapter 6 (+ 234), and
the special issues that make benchmarking Java a slippery science at best (primar-
ily, the effects of the Just-In-Time or Better-Late-Than-Never compiler). In doing
these benchmarks, I’ve made sure to use a server VM that was “warmed up” for
the benchmark (see “BLTN” + 235), to show the truest results.

Packages, Packages, Packages 375

29 April 2003 20:54

376 Chapter 8: Java

Then there are regex issues. Due to the complex interactions of the myriad of opti-
mizations like those discussed in Chapter 6, a seemingly inconsequential change
while trying to test one feature might tickle the optimization of an unrelated fea-
tur e, anonymously skewing the results one way or the other. I did many (many!)
very specific tests, usually approaching an issue from multiple directions, and so I
believe I’ve been able to get meaningful results . . . but one never truly knows.

Warning: Benchmark results can cause drowsiness!

Just to show how slippery this all can be, recall that I judged the two Jakarta pack-
ages (ORO and Regexp) to be roughly comparable in speed. Indeed, they finished
equally in some of the many benchmarks I ran, but for the most part, one gener-
ally ran at least twice the speed of the other (sometimes 10× or 20× the speed).
But which was “one” and which “the other” changed depending upon the test.

For example, I targeted the speed of greedy and lazy quantifiers by applying !ˆ.+:"

and !ˆ.+?:" to a very long string like ‘˙˙˙xxx:x’. I expected the greedy one to be
faster than the lazy one with this type of string, and indeed, it’s that way for every
package, program, and language I tested . . . except one. For whatever reason,
Jakarta’s Regexp’s !ˆ.+:" per formed 70% slower than its !ˆ.+?:". I then applied the
same expressions to a similarly long string, but this time one like ‘x:xxx˙˙˙’ wher e
the ‘:’ is near the beginning. This should give the lazy quantifier an edge, and
indeed, with Regexp, the expression with the lazy quantifier finished 670× faster
than the greedy. To gain more insight, I applied !ˆ[ˆ:]+:" to each string. This
should be in the same ballpark, I thought, as the lazy version, but highly contin-
gent upon certain optimizations that may or may not be included in the engine.
With Regexp, it finished the test a bit slower than the lazy version, for both strings.

Does the previous paragraph make your eyes glaze over a bit? Well, it discusses
just six tests, and for only one regex package — we haven’t even started to com-
par e these Regexp results against ORO or any of the other packages. When com-
par ed against ORO, it tur ns out that Regexp is about 10× slower with four of the
tests, but about 20× faster with the other two! It’s faster with !ˆ.+?:" and !ˆ[ˆ:]+:"

applied to the long string with ‘:’ at the front, so it seems that Regexp does poorly
(or ORO does well) when the engine must walk through a lot of string, and that
the speeds are reversed when the match is found quickly.

Ar e you eyes completely glazed over yet? Let’s try the same set of six tests, but this
time on short strings instead of very long ones. It turns out that Regexp is faster —
thr ee to ten times faster — than ORO for all of them. Okay, so what does this tell
us? Perhaps that ORO has a lot of clunky overhead that overshadows the actual
match time when the matches are found quickly. Or perhaps it means that Regexp
is generally much faster, but has an inefficient mechanism for accessing the target
string. Or perhaps it’s something else altogether. I don’t know.

29 April 2003 20:54

Another test involved an “exponential match” (+ 226) on a short string, which
tests the basic churning of an engine as it tracks and backtracks. These tests took a
long time, yet Regexp tended to finish in half the time of ORO. Ther e just seems to
be no rhyme nor reason to the results. Such is often the case when benchmarking
something as complex as a regex engine.

And the winner is . . .

The mind-numbing statistics just discussed take into account only a small fraction
of the many, varied tests I did. In looking at them all for Regexp and ORO, one
package does not stand out as being faster overall. Rather, the good points and
bad points seem to be distributed fairly evenly between the two, so I (perhaps
somewhat arbitrarily) judge them to be about equal.

Adding the benchmarks from the five other packages into the mix results in a lot
of drowsiness for your author, and no obviously clear winner, but overall, Sun’s
package seems to be the fastest, followed closely by IBM’s. Following in a group
somewhat behind are Pat, Jregex, Regexp, and ORO. The GNU package is clearly
the slowest.

The overall differ ence between Sun and IBM is not so obviously clear that another
equally comprehensive benchmark suite wouldn’t show the opposite order if the
suite happened to be tweaked slightly differ ently than mine. Or, for that matter, it’s
entir ely possible that someone looking at all my benchmark data would reach a
dif ferent conclusion. And, of course, the results could change drastically with the
next release of any of the packages or virtual machines (and may well have, by
the time you read this). It’s a slippery science.

In general, Sun did most things very well, but it’s missing a few key optimizations,
and some constructs (such as character classes) are much slower than one would
expect. Over time, these will likely be addressed by Sun (and in fact, the slowness
of character classes is slated to be fixed in Java 1.4.2). The source code is available
if you’d like to hack on it as well; I’m sure Sun would appreciate ideas and
patches that improve it.

Recommendations
Ther e ar e many reasons one might choose one package over another, but Sun’s
java.util.regex package — with its high quality, speed, good Unicode support,
advanced features, and future ubiquity — is a good recommendation. It comes inte-
grated as part of Java 1.4: String.matches(), for example, checks to see whether
the string can be completely matched by a given regex.

Packages, Packages, Packages 377

29 April 2003 20:54

378 Chapter 8: Java

java.util.regex’s strengths lie in its core engine, but it doesn’t have a good set
of “convenience functions,” a layer that hides much of the drudgery of bit-shuffling
behind the scenes. ORO, on the other hand, while its core engine isn’t as strong,
does have a strong support layer. It provides a very convenient set of functions for
casual use, as well as the core inter face for specialized needs. ORO is designed to
allow multiple regex core engines to be plugged in, so the combination of
java.util.regex with ORO sounds very appealing. I’ve talked to the ORO devel-
oper, and it seems likely that this will happen, so the rest of this chapter looks at
Sun’s java.util.regex and ORO’s interface.

Sun’s Regex Package
Sun’s regex package, java.util.regex, comes standard with Java as of Version
1.4. It provides powerful and innovative functionality with an uncluttered (if some-
what simplistic) class interface to its “match state” object model discussed (+ 370).
It has fairly good Unicode support, clear documentation, and good efficiency.

We’ve seen examples of java.util.regex in earlier chapters (+ 81, 95, 98, 217,
234). We’ll see more later in this chapter when we look at its object model and
how to actually put it to use, but first, we’ll take a look at the regex flavor it sup-
ports, and the modifiers that influence that flavor.

Regex Flavor
java.util.regex is powered by a Traditional NFA, so the rich set of lessons from
Chapters 4, 5, and 6 apply. Table 8-2 on the facing page summarizes its metachar-
acters. Certain aspects of the flavor are modified by a variety of match modes,
tur ned on via flags to the various functions and factories, or turned on and off via
!(?mods-mods)" and !(?mods-mods:˙˙˙)" modifiers embedded within the regular expres-
sion itself. The modes are listed in Table 8-3 on page 380.

A regex flavor certainly can’t be described with just a tidy little table, so here are
some notes to augment Table 8-2:

• The table shows “raw” backslashes, not the doubled backslashes requir ed
when regular expressions are provided as Java string literals. For example, !\n "

in the table must be written as "\\n" as a Java string. See “Strings as Regular
Expr essions” (+ 101).

• With the Pattern.COMMENTS option (+ 380), #˙˙˙1 sequences are taken as
comments. (Don’t forget to add newlines to multiline string literals, as in the
sidebar on page 386.) Unescaped ASCII whitespace is ignored. Note: unlike
most implementations that support this type of mode, comments and free
whitespace ar e recognized within character classes.

29 April 2003 20:54

Table 8-2: Overview of Sun’s java.util.regex Flavor

Character Shorthands

+ 114 (c) \a \b \e \f \n \r \t \0octal \x## \u#### \cchar

Character Classes and Class-Like Constr ucts

+ 117 (c) Classes: [˙˙˙] [ˆ˙˙˙] (may contain class set operators + 123)

+ 118 Almost any character: dot (various meanings, changes with modes)

+ 119 (c) Class shorthands: \w \d \s \W \D \S

+ 119 (c) Unicode properties and blocks \p{Pr op} \P{Pr op}

Anchor s and other Zero-Width Tests

+ 127 Start of line/string: ˆ \A

+ 127 End of line/string: $ \z \Z

+ 128 Start of current match: \G

+ 131 Word boundary: \b \B

+ 132 Lookar ound: (?=˙˙˙) (?!˙˙˙) (?<=˙˙˙) (?<!˙˙˙)

Comments and Mode Modifiers

+ 133 Mode modifiers: (?mods-mods) Modifiers allowed: x d s m i u

+ 134 Mode-modified spans: (?mods-mods:˙˙˙)

+ 112 (c) Literal-text mode: \Q˙˙˙\E

Grouping and Capturing

+ 135 Capturing parentheses: (˙˙˙) \1 \2 . . .

+ 136 Gr ouping-only par entheses: (?:˙˙˙)

+ 137 Atomic grouping: (?>˙˙˙)

+ 138 Alter nation: <

+ 139 Gr eedy quantifiers: , + ? {n} {n,} {x,y}

+ 140 Lazy quantifiers: ,? +? ?? {n}? {n,}? {x,y}?

+ 140 Possessive quantifiers: ,+ ++ ?+ {n}+ {n,}+ {x,y}+

(c) – may be used within a character class (See text for notes on many items)

• \b is valid as a backspace only within a character class (outside, it matches a
word boundary).

• \x## allows exactly two hexadecimal digits, e.g., !\xFCber " matches ‘über’.

• \u#### allows exactly four hexadecimal digits, e.g., !\u00FCber " matches
‘über’, and !\u20AC " matches ‘P’.

• \0octal requir es the leading zero, with one to three following octal digits.

• \cchar is case sensitive, blindly xor ing the ordinal value of the following char-
acter with 64. This bizarre behavior means that, unlike any other regex flavor
I’ve ever seen, \cA and \ca ar e dif ferent. Use uppercase letters to get the tra-
ditional meaning of \x01. As it happens, \ca is the same as \x21, matching
‘!’. (The case sensitivity is scheduled to be fixed in Java 1.4.2.)

Sun’s Regex Package 379

29 April 2003 20:54

380 Chapter 8: Java

Table 8-3: The java.util.regex Match and Regex Modes

Compile-Time Option (?mode) Descr iption

Pattern.UNIXRLINES d Changes how dot and !ˆ " match (+ 382)

Pattern.DOTALL s Causes dot to match any character (+ 110)

Pattern.MULTILINE m Expands where !ˆ " and !$ " can match (+ 382)

Pattern.COMMENTS x Fr ee-spacing and comment mode (+ 72)
(Applies even inside character classes)

Pattern.CASERINSENSITIVE i Case-insensitive matching for ASCII characters

Pattern.UNICODERCASE u Case-insensitive matching for non-ASCII characters

Pattern.CANONREQ Unicode “canonical equivalence” match mode
(dif ferent encodings of the same character match
as identical + 107)

• \w, \d, and \s (and their uppercase counterparts) match only ASCII characters,
and don’t include the other alphanumerics, digits, or whitespace in Unicode.
That is, \d is exactly the same as [0-9], \w is the same as [0-9a-zA-ZR],
and \s is the same as [\t\n\f\r\x0B] (\x0B is the little-used ASCII VT

character).

For full Unicode coverage, you can use Unicode properties (+ 119): use
\p{L} for \w, use \p{Nd} for \d, and use \p{Z} for \s. (Use the \P{˙˙˙} ver-
sion of each for \W, \D, and \S.)

• \p{˙˙˙} and \P{˙˙˙} support most standard Unicode properties and blocks. Uni-
code scripts are not supported. Only the short property names like \p{Lu} ar e
supported — long names like \p{LowercaseRLetter} ar e not supported. (See
the tables on pages 120 and 121.) One-letter property names may omit the
braces: \pL is the same as \p{L}. Note, however, that the special composite
pr operty \p{L&} is not supported. Also, for some reason, \p{P} does not
match characters matched by \p{Pi} and \p{Pf}. \p{C} doesn’t match char-
acters matched by \p{Cn}.

\p{all} is supported, and is equivalent to (?s:.). \p{assigned} and
\p{unassigned} ar e not supported: use \P{Cn} and \p{Cn} instead.

• This package understands Unicode blocks as of Unicode Version 3.1. Blocks
added to or modified in Unicode since Version 3.1 are not known (+ 108).

Block names requir e the ‘In’ prefix (see the table on page 123), and only the
raw form unador ned with spaces and underscores may be used. For example,
\p{InRGreekRExtended} and \p{In Greek Extended} ar e not allowed;
\p{InGreekExtended} is requir ed.

29 April 2003 20:54

• $ and \Z actually match line terminators when they should only match at the
line terminators (for example, a pattern of "(.+$)" actually captures the line
ter minator). This is scheduled to be fixed in Java 1.4.1.

• \G matches the location where the current match started, despite the docu-
mentation’s claim that it matches at the ending location of the previous match
(+ 128). !\G " is scheduled to be fixed (to agree with the documentation and
match at the end of the previous match) in Java 1.4.1.

• The \b and \B word boundary metacharacters’ idea of a “word character” is
not the same as \w and \W’s. The word boundaries understand the properties
of Unicode characters, while \w and \W match only ASCII characters.

• Lookahead constructs can employ arbitrary regular expressions, but look-
behind is restricted to subexpressions whose possible matches are finite in
length. This means, for example, that !? " is allowed within lookbehind, but ! + "

and !+ " ar e not. See the description in Chapter 3, starting on page 132.

• At least until Java 1.4.2 is released, character classes with many elements are
not optimized, and so are very slow; use ranges when possible (e.g., use
[0-9A-F] instead of [0123456789ABCDEF]), and if there are characters or
ranges that are likely to match more often than others, put them earlier in the
class’s list.

Using java.util.regex
The mechanics of wielding regular expressions with java.util.regex ar e fairly
simple. Its object model is the “match state” model discussed on page 370. The
functionality is provided with just three classes:

java.util.regex.Pattern
java.util.regex.Matcher
java.util.regex.PatternSyntaxException

Infor mally, I’ll refer to the first two simply as “Pattern” and “Matcher”. In short,
the Pattern object is a compiled regular expression that can be applied to any
number of strings, and a Matcher object is an individual instance of that regex
being applied to a specific target string. The third class is the exception thrown
upon the attempted compilation of an ill-formed regular expression.

Sun’s documentation is sufficiently complete and clear that I refer you to it for the
complete list of all methods for these objects (if you don’t have the documentation
locally, see http://regex.info for links). The rest of this section highlights just
the main points.

Sun’s Regex Package 381

29 April 2003 20:54

382 Chapter 8: Java

Sun’s java.util.regex “Line Ter minators”
Traditionally, pre-Unicode regex flavors treat a newline specially with respect to
dot, !ˆ ", !$ ", and !\Z ". However, the Unicode standard suggests the larger set of “line
ter minators” discussed in Chapter 3 (+ 108). Sun’s package supports a subset of
these consisting of these five characters and one character sequence:

Character Codes Nicknames Description

U+000A LF \n ASCII Line Feed
U+000D CR \r ASCII Carriage Return
U+000D U+000A CR/LF \r\n ASCII Carriage Return / Line Feed
U+0085 NEL Unicode NEXT LINE
U+2028 LS Unicode LINE SEPARATOR
U+2029 PS Unicode PARAGRAPH SEPARATOR

This list is related to the dot, !ˆ ", !$ ", and !\Z " metacharacters, but the relationships
ar e neither constant (they change with modes), nor consistent (one would expect
!ˆ " and !$ " to be treated similarly, but they are not).

Both the Pattern.UNIXRLINES and Pattern.DOTALL match modes (available
also via !(?d)" and !(?s)") influence what dot matches.

!ˆ " can always match at the beginning of the string, but can match elsewhere
under the (?m) Pattern.MULTILINE mode. It also depends upon the !(?d)"
Pattern.UNIXRLINES mode.

!$ " and !\Z " can always match at the end of the string, but they can also match just
befor e certain string-ending line terminators. With the Pattern.MULTILINE

mode, !$ " can match after certain embedded line terminators as well. With Java
1.4.0, Pattern.UNIXRLINES does not influence !$ " and !\Z " in the same way (but
it’s slated to be fixed in 1.4.1 such that it does). The following table summarizes
the relationships as of 1.4.0.

LF CR CR/LF NEL LS PS

Default action, without modifiers
dot matches all but: 3

ˆ matches at beginning of string only
$ and \Z match before string-ending: 3 3 3 3 3

With Pattern.MULTILINE or (?m)
ˆ matches after any: 3

$ matches before any: 3 3 3 3 3

With Pattern.DOTALL or (?s)
dot matches any character

— does not apply if Pattern.UNIXRLINES or (?d) is in effect

Finally, note that there is a bug in Java 1.4.0 that is slated to be fixed in 1.4.1:
!$ " and !\Z " actually match the line terminators, when present, rather than
mer ely matching at line terminators.

29 April 2003 20:54

Her e’s a complete example showing a simple match:

public class SimpleRegexTest {
public static void main(String[] args)
{

String sampleText = "this is the 1st test string";
String sampleRegex = "\\d+\\w+";
java.util.regex.Pattern p = java.util.regex.Pattern.compile(sampleRegex);
java.util.regex.Matcher m = p.matcher(sampleText);

if (m.find()) {
String matchedText = m.group();
int matchedFrom = m.start();
int matchedTo = m.end();
System.out.println("matched [" + matchedText + "] from " +

matchedFrom + " to " + matchedTo + ".");
} else {

System.out.println("didn’t match");
}

}
}

This prints ‘matched [1st] from 12 to 15.’. As with all examples in this chap-
ter, names I’ve chosen are in italic. Notice the Matcher object, after having been
cr eated by associating a Pattern object and a target string, is used to instigate the
actual match (with its m.find() method), and to query the results (with
m.group(), etc.).

The parts shown in bold can be omitted if

import java.util.regex.+;

or perhaps

import java.util.regex.Pattern;
import java.util.regex.Matcher;

ar e inserted at the head of the program, just as with the examples in Chapter 3
(+ 95). Doing so makes the code more manageable, and is the standard approach.
The rest of this chapter assumes the import statement is always supplied. A more
involved example is shown in the sidebar on page 386.

The Pattern.compile() Factor y
A Pattern regular-expr ession object is created with Pattern.compile(˙˙˙). The
first argument is a string to be interpreted as a regular expression (+ 101). Option-
ally, compile-time options shown in Table 8-3 on page 380 can be provided as a
second argument. Here’s a snippet that creates a Pattern object from the string in
the variable sampleRegex, to be matched in a case-insensitive manner:

Pattern pat = Pattern.compile(sampleRegex,
Pattern.CASERINSENSITIVE ; Pattern.UNICODERCASE);

A call to Pattern.compile(˙˙˙) can throw two kinds of exceptions: an invalid reg-
ular expression throws PatternSyntaxException, and an invalid option value
thr ows IllegalArgumentException.

Sun’s Regex Package 383

29 April 2003 20:54

384 Chapter 8: Java

Patter n’s matcher(˙˙˙) method

A Pattern object offers some convenience methods we’ll look at shortly, but for
the most part, all the work is done through just one method: matcher(˙˙˙). It
accepts a single argument: the string to search.† It doesn’t actually apply the regex,
but prepar es the general Pattern object to be applied to a specific string. The
matcher(˙˙˙) method retur ns a Matcher object.

The Matcher Object
Once you’ve associated a regular expression with a target string by creating a
Matcher object, you can instruct it to apply the regex in various ways, and query
the results of that application. For example, given a Matcher object m, the call
m.find() actually applies m’s regex to its string, retur ning a Boolean indicating
whether a match is found. If a match is found, the call m.group() retur ns a string
repr esenting the text actually matched.

The next sections list the various Matcher methods that actually apply a regex,
followed by those that query the results.

Applying the regex

Her e ar e the main Matcher methods for actually applying its regex to its string:

find()

Applies the object’s regex to the object’s string, retur ning a Boolean indicating
whether a match is found. If called multiple times, the next match is retur ned
each time.

find(of fset)
If find(˙˙˙) is given an integer argument, the match attempt starts from the
given of fset number of characters from the start of the string. It throws
IndexOutOfBoundsException if the of fset is negative or beyond the end of
the string.

matches()

This method retur ns a Boolean indicating whether the object’s regex exactly
matches the object’s string. That is, the regex is wrapped with an implied
!\A˙˙˙\z ".‡ This is also available via String’s matches() method. For example,
"123".matches("\\d+") is true.

† Actually, matcher’s argument can be any object implementing the CharSequence inter face (of which
String, StringBuffer, and CharBuffer ar e examples). This provides the flexibility to apply regular
expr essions to a wide variety of data, including text that’s not even kept in contiguous strings.

‡ Due to the bug with !\Z " mentioned at the bottom of page 382, with version 1.4.0, the regex actually
appears to be wrapped with an implied !\A˙˙˙\Z " instead.

29 April 2003 20:54

lookingAt()

Retur ns a Boolean indicating whether the object’s regex matches the object’s
string fr om its beginning. That is, the regex applied with an implied !\A " at its
start.

Quer ying the results

The following Matcher methods retur n infor mation about a successful match.
They throw IllegalStateException if the object’s regex hasn’t yet been applied
to the object’s string, or if the previous application was not successful. The meth-
ods that accept a num argument (referring to a set of capturing parentheses)
thr ow IndexOutOfBoundsException when an invalid num is given.

group()

Retur ns the text matched by the previous regex application.

groupCount()

Retur ns the number of sets of capturing parentheses in the object’s regex.
Numbers up to this value can be used in the group(num) method,
described next.

group(num)

Retur ns the text matched by the num th set of capturing parentheses, or null if
that set didn’t participate in the match. A num of zero indicates the entire
match, so group(0) is the same as group().

start(num)

Retur ns the offset, in characters, from the start of the string to the start of
wher e the num th set of capturing parentheses matched. Returns -1 if the set
didn’t participate in the match.

start()

The offset to the start of the match; this is the same as start(0).

end(num)

Retur ns the offset, in characters, from the start of the string to the end of
wher e the num th set of capturing parentheses matched. Returns -1 if the set
didn’t participate in the match.

end()

The offset to the end of the match; this is the same as end(0).

Reusing Matcher objects for efficienc y

The whole point of having separate compile and apply steps is to increase effi-
ciency, alleviating the need to recompile a regex with each use (+ 241). Additional
ef ficiency can be gained by reusing Matcher objects when applying the same
regex to new text. This is done with the reset method, described next.

Sun’s Regex Package 385

29 April 2003 20:54

386 Chapter 8: Java

CSV Par sing with java.util.regex
Her e’s the java.util.regex version of the CSV example from Chapter 6
(+ 271). The regex has been updated to use possessive quantifiers (+ 140)
for a bit of extra efficiency.

First, we set up Matcher objects that we’ll use in the actual processing. The
‘\n’ at the end of each line is needed because we use !#˙˙˙ " comments, which
end at a newline.

//Pr epar e the regexes we’ll use

Pattern pCSVmain = Pattern.compile(
" \\G(?:ˆ;,) \n"+
" (?: \n"+
" # Either a double-quoted field... \n"+
" \" # field’s opening quote \n"+
" ((?> [ˆ\"]++) (?> \"\" [ˆ\"]++)++) \n"+
" \" # field’s closing quote \n"+
" # ... or ... \n"+
" ; \n"+
" # ... some non-quote/non-comma text ... \n"+
" ([ˆ\",]++) \n"+
") \n",
Pattern.COMMENTS);

Pattern pCSVquote = Pattern.compile("\"\"");
// Now create Matcher objects, with dummy text, that we’ll use later.
Matcher mCSVmain = pCSVmain.matcher("");
Matcher mCSVquote = pCSVquote.matcher("");

Then, to parse the string in csvText as CSV text, we use those Matcher
objects to actually apply the regex and use the results:

mCSVmain.reset(csvText); // Tie the target text to the mCSVmain object
while (mCSVmain.find())
{

String field; // We’ll fill this in with $1 or $2 . . .
String second = mCSVmain.group(2);
if (second != null)

field = second;
else {

// If $1, must replace paired double-quotes with one double quote
mCSVquote.reset(mCSVmain.group(1));
field = mCSVquote.replaceAll("\"");

}
// We can now work with field . . .
System.out.println("Field [" + field + "]");

}

This is more efficient than the similar version shown on page 217 for two
reasons: the regex is more efficient (as per the Chapter 6 discussion), and
that one Matcher object is reused, rather than creating and disposing of new
ones each time (as per the discussion on page 385).

29 April 2003 20:54

reset(text)
This method reinitializes the Matcher object with the given String (or any
object that implements a CharSequence), such that the next regex operation
will start at the beginning of this text. This is more efficient than creating a
new Matcher object (+ 385). You can omit the argument to keep the current
text, but to reset the match state to the beginning.

Reusing the Matcher object saves the Java mechanics of disposing of the old
object and creating a new one, and requir es only about one fourth the overhead
of creating a new Matcher object.

In practice, you usually need only one Matcher object per regex, at least if you
intend to apply the regex to only one string at a time, as is commonly the case.
The sidebar on the facing page shows this in action. Dummy strings are immedi-
ately associated with each Pattern object to create the Matcher objects. It’s okay
to start with a dummy string because the object’s reset(˙˙˙) method is called with
the real text to match against before the object is used further.

In fact, there’s really no need to actually save the Pattern objects to variables,
since they’re not used except to create the Matcher objects. The lines:

Pattern pCSVquote = Pattern.compile("\"\"");
Matcher mCSVquote = mCSVquote.matcher("");

can be replaced by

Matcher mCSVquote = Pattern.compile("\"\"").matcher("");

thus eliminating the pCSVquote variable altogether.

Simple search and replace

You can implement search-and-r eplace operations using just the methods men-
tioned so far, but the Matcher object offers convenient methods to do simple
search-and-r eplace for you:

replaceAll(replacement)
The Matcher object is reset, and its regex is repeatedly applied to its string.
The retur n value is a copy of the object’s string, with any matches replaced by
the replacement string.

This is also available via a String’s replaceAll method:

string.replaceAll(regex, replacement);

is equivalent to:

Pattern.compile(regex).matcher(string).replaceAll(replacement)

replaceFirst(replacement)
The Matcher object is reset, and its regex is applied once to its string. The
retur n value is a copy of the object’s string, with the first match (if any)
replaced by the replacement string.

Sun’s Regex Package 387

29 April 2003 20:54

388 Chapter 8: Java

This is also available via a String’s replaceFirst method, as just described
with replaceAll.

With any of these functions, the replacement string receives special parsing:

• Instances of ‘$1’, ‘$2’, etc., within the replacement string are replaced by the
text matched by the associated set of capturing parentheses. ($0 is replaced by
the entire text matched.)

IllegalArgumentException is thrown if the character following the ‘$’ is not
an ASCII digit.

Only as many digits after the ‘$’ as “make sense” are used. For example, if
ther e ar e thr ee capturing parentheses, ‘$25’ in the replacement string is inter-
pr eted as $2 followed by the character ‘5’. However, in the same situation, ‘$6’
in the replacement string throws IndexOutOfBoundsException.

• A backslash escapes the character that follows, so use ‘˙˙˙\$˙˙˙’ in the replace-
ment string to include a dollar sign in it. By the same token, use ‘˙˙˙\\˙˙˙’ to get
a backslash into the replacement value. (And if you’re providing the replace-
ment string as a Java string literal, that means you need "˙˙˙\\\\˙˙˙" to get a
backslash into the replacement value.) Also, if there are, say, 12 sets of captur-
ing parentheses and you’d like to include the text matched by the first set, fol-
lowed by ‘2’, you can use a replacement value of ‘˙˙˙$1\2˙˙˙’.

Advanced search and replace

Two additional methods provide raw access to Matcher’s search-and-r eplace
mechanics. Together, they build a result in a StringBuffer that you provide. The
first is called after each match, to fill the result with the replacement string, as well
as the text between the matches. The second is called after all matches have been
found, to tack on the text remaining after the final match.

appendReplacement(stringBuf fer, replacement)
Called immediately after a regex has been successfully applied (e.g., with
find), this method appends two strings to the given stringBuf fer : first, it
copies in the text of the original target string prior to the match. Then it
appends the replacement string, as per the special processing described in the
pr evious section.

For example, let’s say we’ve got a Matcher object m that associates the regex
!\w+ " with the string ‘-->one+test<--’. The first time through this while loop:

while (m.find())
m.appendReplacement(sb, "XXX")

the find matches the underlined portion of ‘-->-->one+test<--’. The call to
appendReplacement fills the stringBuf fer sb with the text before the match,

29 April 2003 20:54

‘-->’, then bypasses what matched, instead appending the replacement string,
‘XXX’, to sb.

The second time through the loop, find matches ‘-->one++test<--’. The call
to appendReplacement appends the text before the match, ‘+’, then again
appends the replacement string, ‘XXX’.

This leaves sb with ‘-->XXX+XXX’, and the original target string within the m

object marked at ‘-->one+test<--’.

appendTail(stringBuf fer)
Called after all matches have been found (or, at least, after the desired
matches have been found — you can stop early if you like), this method
appends the remaining text. Continuing the previous example,

m.appendTail(sb)

appends ‘<--’ to sb. This leaves it with ‘-->XXX+XXX<--’, completing the
search and replace.

Her e’s an example showing how you might implement your own version of
replaceAll using these. (Not that you’d want to, but it’s illustrative.)

public static String replaceAll(Matcher m, String replacement)
{

m.reset(); // Be sure to start with a fresh Matcher object
StringBuffer result = new StringBuffer(); // We’ll build the updated copy here
while (m.find())

m.appendReplacement(result, replacement);
m.appendTail(result);
return result.toString(); //Convert to a String and retur n

}

Her e’s a slightly more involved snippet, which prints a version of the string in the
variable metric, with Celsius temperatures converted to Fahrenheit:

// Build a matcher to find numbers followed by "C" within the variable "Metric"
Matcher m = Pattern.compile("(\\d+(?:\\.(\\d+))?)C\\b").matcher(metric);

StringBuffer result = new StringBuffer(); // We’ll build the updated copy here
while (m.find()) {

float celsius = Float.parseFloat(m.group(1)); //Get the number, as a number
int fahrenheit = (int) (celsius + 9/5 + 32); //Convert to a Fahrenheit value
m.appendReplacement(result, fahrenheit + "F"); //Insert it

}
m.appendTail(result);
System.out.println(result.toString()); //Display the result

For example, if the variable metric contains ‘from 36.3C to 40.1C.’, it displays
‘from 97F to 104F.’.

Sun’s Regex Package 389

29 April 2003 20:54

390 Chapter 8: Java

Other Pattern Methods
In addition to the main compile(˙˙˙) factories, the Pattern class contains some
helper functions and methods that don’t add new functionality, but make the cur-
rent functionality more easily accessible.

Pattern.matches(patter n, text)
This static function retur ns a Boolean indicating whether the string patter n can
match the CharSequence (e.g., String) text. Essentially, this is:

Pattern.compile(pattern).matcher(text).matches();

If you need to pass compile options, or need to gain access to more infor ma-
tion about the match than whether it was successful, you’ll have to use the
methods described earlier.

Patter n’s split method, with one argument

split(text)
This Pattern method accepts text (a CharSequence) and retur ns an array of
strings from text that are delimited by matches of the object’s regex. This is
also available via a String’s split method.

This trivial example

String[] result = Pattern.compile("\\.").split("209.204.146.22");

retur ns the array of four strings (‘209’, ‘204’, ‘146’, and ‘22’) that are separated by
the three matches of !\. " in the text. This simple example splits on only a single lit-
eral character, but you can split on an arbitrary regular expression. For example,
you might approximate splitting a string into “words” by splitting on non-alphanu-
merics:

String[] result = Pattern.compile("\\W+").split(Text);

When given a string like ‘What’s up, Doc’ it retur ns the four strings (‘What’, ‘s’,
‘up’, and ‘Doc’) delimited by the three matches of the regex. (If you had non-ASCII

text, you’d probably want to use !\P{L}+ ", or perhaps ![ˆ\p{L}\p{N}R]", as the
regex, instead of !\W+ " + 380.)

Empty elements with adjacent matches
If the object’s regex can match at the beginning of the text, the first string retur ned
by split is an empty string (a valid string, but one that contains no characters).
Similarly, if the regex can match two or more times in a row, empty strings are
retur ned for the zero-length text “separated” by the adjacent matches. For
example,

String[] result = Pattern.compile("\\s+,\\s+").split(", one, two , ,, 3");

splits on a comma and any surrounding whitespace, retur ning an array of five
strings: an empty string, ‘one’, ‘two’, two empty strings, and ‘3’.

29 April 2003 20:54

Finally, any empty strings that might appear at the end of the list are suppr essed:

String[] result = Pattern.compile(":").split(":xx:");

This produces just two strings: an empty string and ‘xx’. To keep trailing empty
elements, use the two-argument version of split(˙˙˙), described next.

Patter n’s split method, with two arguments

split(text, limit)
This version of split(˙˙˙) pr ovides some control over how many times the
Pattern’s regex is applied, and what is done with trailing empty elements.

The limit argument takes on differ ent meanings depending on whether it’s less
than zero, zero, or greater than zero.

Split with a limit less than zero
Any limit less than zero means to keep trailing empty elements in the array. Thus,

String[] result = Pattern.compile(":").split(":xx:", -1);

retur ns an array of three strings (an empty string, ‘xx’, and another empty string).

Split with a limit of zero
An explicit limit of zero is the same as if there wer e no limit given, i.e., trailing
empty elements are suppr essed.

Split with a limit greater than zero
With a limit gr eater than zero, split(˙˙˙) retur ns an array of at most limit
elements. This means that the regex is applied at most limit -1 times. (A limit of
thr ee, for example, requests thr ee strings separated by two matches.)

After having matched limit -1 times, no further matches are checked, and the entire
remainder of the string after the final match is retur ned as the last string in the
array. For example, if you had a string with

Friedl,Jeffrey,Eric Francis,America,Ohio,Rootstown

and wanted to isolate just the three name components, you’d split the string into
four parts (the three name components, and one final “everything else” string):

String[] NameInfo = Pattern.compile(",").split(Text, 4);
// NameInfo[0] is the family name
// NameInfo[1] is the given name
// NameInfo[2] is the middle name (or in my case, middle names)
// NameInfo[3] is everything else, which we don’t need, so we’ll just ignore it.

The reason to limit split in this way is for enhanced efficiency — why bother
going through the work of finding the rest of the matches, creating new strings,
making a larger array, etc., when there’s no intention to use the results of that
work? Supplying a limit allows just the requir ed work to be done.

Sun’s Regex Package 391

29 April 2003 20:54

392 Chapter 8: Java

A Quick Look at Jakar ta-ORO
Jakarta-ORO (fr om now on, just “ORO”) is a vast, modular framework of mostly
regex-r elated text-pr ocessing featur es containing a dizzying eight interfaces and
35+ classes. When first faced with the documentation, you can be intimidated until
you realize that you can get an amazing amount of use out of it by knowing just
one class, Perl5Util, described next.

ORO’s Perl5Util
This ORO version of the example from page 383 shows how simple Perl5Util is
to work with:

import org.apache.oro.text.perl.Perl5Util;

public class SimpleRegexTest {
public static void main(String[] args)
{

String sampleText = "this is the 1st test string";
Perl5Util engine = new Perl5Util();

if (engine.match("/\\d+\\w+/", sampleText)) {
String matchedText = engine.group(0);
int matchedFrom = engine.beginOffset(0);
int matchedTo = engine.endOffset(0);
System.out.println("matched [" + matchedText + "] from " +

matchedFrom + " to " + matchedTo + ".");
} else {

System.out.println("didn’t match");
}

}
}

One class hides all the messy details about working with regular expressions
behind a simple façade that somewhat mimics regular-expr ession use in Perl.
Wher e Perl has

$input =˜ /ˆ([-+]?[0-9]+(\.[0-9]+)?)\s+([CF])$/i

(fr om an example in Chapter 2 + 48), ORO allows:

engine.match("/ˆ([-+]?[0-9]+(\\.[0-9]+)?)\\s+([CF])$/i", input)

Wher e Perl then has

$InputNum = $1; # Save to named variables to make the ...
$Type = $3; # ... rest of the program easier to read.

ORO pr ovides for:

inputNum = engine.group(1); // Save to named variables to make the ...
type = engine.group(3); // ... rest of the program easier to read.

If you’re not familiar with Perl, the /˙˙˙/i trappings may seem a bit odd, and they
can be cumbersome at times, but it lowers the barrier to regex use about as low as

29 April 2003 20:54

it can get in Java.† (Unfortunately, not even ORO can get around the extra escaping
requir ed to get regex backslashes and double quotes into Java string literals.)

Even substitutions can be simple. An example from Chapter 2 to “commaify” a
number (+ 67) looks like this in Perl:

$text =˜ s/(\d)(?=(\d\d\d)+(?!\d))/$1,/g;

and this with ORO:
text = engine.substitute("s/(\\d)(?=(\\d\\d\\d)+(?!\\d))/$1,/g", text);

Traditionally, regular-expr ession use in Java has a class model that involves pre-
compiling the regex to some kind of pattern object, and then using that object
later when you actually need to apply the regex. The separation is for efficiency,
so that repeated uses of a regex doesn’t have to suffer the repeated costs of com-
piling each time.

So, how does Perl5Util, with its procedural approach of accepting the raw regex
each time, stay reasonably efficient? It caches the results of the compile, keeping a
behind-the-scenes mapping between a string and the resulting regex object. (See
“Compile caching in the procedural approach” in Chapter 6 + 243.)

It’s not perfectly efficient, as the argument string must be parsed for the regex
delimiters and modifiers each time, so there’s some extra overhead, but the
caching keeps it reasonable for casual use.

A Mini Perl5Util Reference
The ORO suite of text-processing tools at first seems complex because of the raw
number of classes and interfaces. Although the documentation is well-written, it’s
hard to know exactly where to start. The Perl5Util part of the documentation,
however, is fairly self-contained, so it’s the only thing you really need at first. The
next sections briefly go over the main methods.

Perl5Util basics—initiating a match

match(expr ession, tar get)
Given a match expr ession in Perl notation, and a tar get string, retur ns true if
the regex can match somewhere in the string:

if (engine.match("/ˆSubject: (.+)/im", emailMessageText))
{

+
+
+

As with Perl, you can pick your own delimiters, but unlike Perl, the leading m

is not requir ed, and ORO does not support nested delimiters (e.g., m{˙˙˙}).

† One further step, I think, would be to remove the Perl trappings and just have separate arguments
for the regex and modifier. The whole m/˙˙˙/ bit may be convenient for those coming to Java from a
Perl background, but it doesn’t seem “natural” in Java.

A Quick Look at Jakar ta-ORO 393

29 April 2003 20:54

394 Chapter 8: Java

Modifier letters may be placed after the closing delimiter. The modifiers
allowed are:

i (case-insensitive match + 109)
x (fr ee-spacing and comments mode + 110)
s (dot-matches-all + 110)
m (enhanced line anchor mode + 111)

If there’s a match, the various methods described in the next section are avail-
able for querying additional information about the match.

substitute(expr ession, tar get)
Given a string showing a Perl-like substitute expr ession, apply it to the tar get
text, retur ning a possibly-modified copy:

headerLine = engine.substitute("s/\\b(Re:\\s+)+//i", headerLine);

The modifiers mentioned for match can be placed after the final delimiter, as
can g, which has the substitution continue after the first match, applying the
regex to the rest of the string in looking for subsequent matches to replace.†

The substitution part of the expr ession is interpreted specially. Instances of $1,
$2, etc. are replaced by the associated text matched by the first, second, etc.,
set of capturing parentheses. $0 and $& ar e replaced with the entire matched
text. \U˙˙˙\E and \L˙˙˙\E cause the text between to be converted to upper- and
lowercase, respectively, while \u and \l cause just the next character to be
converted. Unicode case conversion is supported.

Her e’s an example that turns words in all caps to leading-caps:

phrase = engine.substitute("s/\\b([A-Z])([A-Z]+)\\b/$1\\L$2\\E/g", phrase);

(In Perl this would be better written as s/\b([A-Z]+)\b/\L\u$1\E/g, but
ORO curr ently doesn’t support the combination of \L˙˙˙\E with \u or \l.)

substitute(result, expr ession, tar get)
This version of the substitute method writes the possibly-modified version
of the tar get string into a StringBuffer result, and retur ns the number of
replacements actually done.

split(collection, expr ession, tar get, limit)
The m/˙˙˙/ expr ession (for matted in the same way as for the match method) is
applied to the tar get string, filling collection with the text separated by
matches. There is no retur n value.

The collection should be an object implementing the java.util.Collection

inter face, such as java.util.ArrayList or java.util.Vector.

† An o modifier is also supported. It’s not particularly useful, so I don’t cover it in this book, but it’s
important to note that it is completely unrelated to Perl’s /o modifier.

29 April 2003 20:54

The limit argument, which is optional, limits the number of times the regex is
applied to limit minus one. When the regex has no capturing parentheses, this
limits the retur ned collection to at most limit elements.

For example, if your input is a string of values separated by simple commas,
perhaps with spaces before or after, and you want to isolate just the first two
values, you would use a limit of three:

java.util.ArrayList list = new java.util.ArrayList();
engine.split(list, "m/\\s+ , \\s+/x", input, 3);

An input string of "USA, NY, NYC, Bronx", result in a list of three elements,
‘USA’, ‘NY’, and ‘NYC, Bronx’. Because you want just the first two, you could
then eliminate the “everything else” third element.

An omitted limit allows all matches to happen, as does a non-positive one.

If the regex has capturing parentheses, additional elements associated with
each $1, $2, etc., may be inserted for each successful regex application. With
ORO’s split, they are inserted only if not empty (e.g., empty elements are not
cr eated fr om capturing parentheses.) Also, note that the limit limits the num-
ber of regex applications, not the number of elements retur ned, which is
dependent upon the number of matches, as well as the number of capturing
par entheses that actually capture text.

Perl’s split operator has a number of somewhat odd rules as to when it
retur ns leading and trailing empty elements that might result from matches at
the beginning and end of the string (+ 323). As of Version 2.0.6, ORO does not
support these, but there is talk among the developers of doing so in a future
release.

Her e’s a simple little program that’s convenient for testing split:

import org.apache.oro.text.perl.Perl5Util;
import java.util.+;

public class OroSplitTest {
public static void main(String[] args) {

Perl5Util engine = new Perl5Util();
List list = new ArrayList();
engine.split(list, args[0], args[1], Integer.parseInt(args[2]));
System.out.println(list);

}
}

A Quick Look at Jakar ta-ORO 395

29 April 2003 20:54

396 Chapter 8: Java

The println call shows each element within [˙˙˙], separated by commas.
Her e ar e a few examples:

% java OroSplitTest ’/\./’ ’209.204.146.22’ -1
[209, 204, 146, 22]
% java OroSplitTest ’/\./’ ’209.204.146.22’ 2
[209, 204.146.22]
% java OroSplitTest ’m</+<’ ’/usr/local/bin//java’ -1
[, usr, local, bin, java]
% java OroSplitTest ’m/(?=(?:\d\d\d)+$)/’ 1234567890 -1
[1, 234, 567, 890]
% java OroSplitTest ’m/\s,
\s,/i’ ’this
that
other’ -1
[this, that, other]
% java OroSplitTest ’m/\s,(
)\s,/i’ ’this
that
other’ -1
[this,
, that,
, other]

Note that with most shells, you don’t need to double the backslashes if you
use single quotes to delimit the arguments, as you do when entering the same
expr essions as Java string literals.

Perl5Util basics—inspecting the results of a match

The following Perl5Util methods are available to report on the most recent suc-
cessful match of a regular expression (an unsuccessful attempt does not reset
these). They throw NullPointerException if called when there hasn’t yet been a
successful match.

group(num)

Retur ns the text matched by the num th set of capturing parentheses, or by the
whole match if num is zero. Returns null if there aren’t at least num sets of
capturing parentheses, or if the named set did not participate in the match.

toString()

Retur ns the text matched—the same as group(0).

length()

Retur ns the length of the text matched—the same as group(0).length().

beginOffset(num)

Retur ns the number of characters from the start of the target string to the start
of the text retur ned by group(num). Retur ns -1 in cases where group(num)

retur ns null.

endOffset(num)

Retur ns the number of characters from the start of the target string to the first
character after the text retur ned by group(num). Retur ns -1 in cases where
group(num) retur ns null.

29 April 2003 20:54

groups()

Retur ns the number of capturing groups in the regex, plus one (the extra is to
account for the virtual group zero of the entire match). All num values to the
methods just mentioned must be less than this number.

getMatch()

Retur ns an org.apache.oro.text.regex.MatchResult object, which has all
the result-querying methods listed so far. It’s convenient when you want to
save the results of the latest match beyond the next use of the Perl5Util

object. getMatch() is valid only after a successful match, and not after a
substitute or split.

preMatch()

Retur ns the part of the target string before (to the left of) the match.

postMatch()

Retur ns the part of the target string after (to the right of) the match.

Using ORO’s Underlying Classes
If you need to do things that Perl5Util doesn’t allow, but still want to use ORO,
you’ll need to use the underlying classes (the “vast, modular framework”) directly.
As an example, here’s an ORO version of the CSV-pr ocessing script on page 386.

First, we need these 11 classes:

import org.apache.oro.text.regex.PatternCompiler;
import org.apache.oro.text.regex.Perl5Compiler;
import org.apache.oro.text.regex.Pattern;
import org.apache.oro.text.regex.PatternMatcher;
import org.apache.oro.text.regex.Perl5Matcher;
import org.apache.oro.text.regex.MatchResult;
import org.apache.oro.text.regex.Substitution;
import org.apache.oro.text.regex.Util;
import org.apache.oro.text.regex.Perl5Substitution;
import org.apache.oro.text.regex.PatternMatcherInput;
import org.apache.oro.text.regex.MalformedPatternException;

Then, we prepar e the regex engine—this is needed just once per thread:

PatternCompiler compiler = new Perl5Compiler();
PatternMatcher matcher = new Perl5Matcher();

Now we declare the variables for our two regexes, and also initialize an object
repr esenting the replacement text for when we change ‘""’ to ‘"’:

Pattern rCSVmain = null;
Pattern rCSVquote = null;
// When rCSVquote matches, we’ll want to replace with one double quote:
Substitution sCSVquote = new Perl5Substitution("\"");

A Quick Look at Jakar ta-ORO 397

29 April 2003 20:54

398 Chapter 8: Java

Now we create the regex objects. The raw ORO classes requir e patter n exceptions
to always be caught or thrown, even though we know the hand-constructed regex
will always work (well, after we’ve tested it once to make sure we’ve typed it
corr ectly).

try {
rCSVmain = compiler.compile(

" (?:ˆ;,) \n"+
" (?: \n"+
" # Either a double-quoted field... \n"+
" \" # field’s opening quote \n"+
" ([ˆ\"]+ (?: \"\" [ˆ\"]+)+) \n"+
" \" # field’s closing quote \n"+
" # ... or ... \n"+
" ; \n"+
" # ... some non-quote/non-comma text ... \n"+
" ([ˆ\",]+) \n"+
") \n",
Perl5Compiler.EXTENDEDRMASK);

rCSVquote = compiler.compile("\"\"");
}
catch (MalformedPatternException e) {

System.err.println("Error parsing regular expression.");
System.err.println("Error: " + e.getMessage());
System.exit(1);

}

ORO’s !\G " doesn’t work properly (at least as of Version 2.0.6), so I’ve removed it.
You’ll recall from the original discussion in Chapter 5 (+ 216) that !\G " had been
used as a precaution, and wasn’t strictly requir ed, so it’s okay to remove here.

Finally, this snippet actually does the processing:

PatternMatcherInput inputObj = new PatternMatcherInput(inputCSVtext);
while (matcher.contains(inputObj, rCSVmain))
{

String field; // We’ll fill this in with $1 or $2
String second = matcher.getMatch().group(2);
if (second != null) {

field = second;
} else {

field = matcher.getMatch().group(1);
// If $1, must replace paired double quotes with one double quote
field = Util.substitute(matcher, // the matcher to use

rCSVquote, // the pattern to match with it
sCSVquote, // the replacement to be done
field, // the target string
Util.SUBSTITUTERALL); // do all replacements

}
// We can now work with the field . . .
System.out.println("Field [" + field + "]");

}

Phew! Seeing all that’s involved certainly helps you to appreciate Perl5Util!

29 April 2003 20:54

