
9
.NET

Micr osoft’s .NET Framework, usable with Visual Basic, C#, and C++ (among other
languages), offers a shared regular-expr ession library that unifies regex semantics
among the languages. It’s a full-featured, powerful engine that allows you the
maximum flexibility in balancing speed and convenience.

Each language has a differ ent syntax for handling objects and methods, but those
underlying objects and methods are the same regardless of the language, so even
complex examples shown in one language directly translate to the other languages
of the .NET language suite. Examples in this chapter are shown with Visual Basic.

In This Chapter Befor e looking at what’s in this chapter, it’s important to empha-
size that this chapter relies heavily on the base material in Chapters 1 through 6. I
understand that some readers interested only in .NET may be inclined to start their
reading with this chapter, and I want to encourage them not to miss the benefits of
the preface (in particular, the typographical conventions) and the earlier chapters:
Chapters 1, 2, and 3 introduce basic concepts, features, and techniques involved
with regular expressions, while Chapters 4, 5, and 6 offer important keys to regex
understanding that directly apply to .NET’s regex engine.

This chapter first looks at .NET’s regex flavor, including which metacharacters are
supported and how,† as well as the special issues that await the .NET pr ogrammer.
Then there’s a quick overview of .NET’s regex-r elated object model, and how it’s
been designed to allow you to wield a regex, followed by a detailed look at each
of the core regex-r elated classes. It all ends with an example of how to build a
personal regex library by encapsulating pre-built regular expressions into a shared
assembly.

† This book covers .NET “Version 2002.” While researching this book, I uncovered a few bugs, which
Micr osoft tells me will be fixed in the 2004 release of .NET.

399

29 April 2003 09:31

400 Chapter 9: .NET

.NET’s Regex Flavor

.NET has been built with a Traditional NFA regex engine, so all the important NFA-
related lessons from Chapters 4, 5, and 6 are applicable. Table 9-1 on the facing
page summarizes .NET’s regex flavor, most of which is discussed in Chapter 3.

Certain aspects of the flavor can be modified by match modes (+ 109), turned on
via option flags to the various functions and constructors that accept regular
expr essions, or in some cases, turned on and off within the regex itself via
!(?mods-mods)" and !(?mods-mods:˙˙˙)" constructs. The modes are listed in Table 9-2
on page 402.

A regex flavor can’t be described with just a simple table or two, so here are some
notes to augment Table 9-1:

• In the table, “raw” escapes like !\w " ar e shown. These can be used directly in
VB.NET string literals ("\w"), and in C# verbatim strings (@"\w"). In languages
without regex-friendly string literals, such as C++, each backslash in the regex
requir es two in the string literal ("\\w"). See “Strings as Regular Expressions”
(+ 101).

• \b is valid as a backspace only within a character class (outside, it matches a
word boundary).

• \x## allows exactly two hexadecimal digits, e.g., !\xFCber " matches ‘über’.

• \u#### allows exactly four hexadecimal digits, e.g., !\u00FCber " matches
‘über’, and !\u20AC " matches ‘P’.

• \w, \d, and \s (and their uppercase counterparts) normally match the full
range of appropriate Unicode characters, but change to an ASCII-only mode
with the RegexOptions.ECMAScript option (+ 406).

• In its default mode, \w matches the Unicode properties \p{Ll}, \p{Lu},
\p{Lt}, \p{Lo}, \p{Nd}, and \p{Pc}. Note that this does not include the
\p{Lm} pr operty. (See the table on page 121 for the property list.)

• In its default mode, \s matches ![\f\n\r\t\v \x85 \p{Z}] ". U+0085 is the
Unicode NEXT LINE contr ol character, and \p{Z} matches Unicode “separator”
characters (+ 120).

• \p{˙˙˙} and \P{˙˙˙} support most standard Unicode properties and blocks. Uni-
code scripts are not supported. Only the short property names like \p{Lu} ar e
supported — long names like \p{LowercaseRLetter} ar e not supported. (See
the tables on pages 120 and 121.) Note, however, that the special composite
pr operty \p{L&} is not supported, nor, for some reason, are the \p{Pi} and
\p{Pf} pr operties. Single-letter properties do requir e the braces (that is, the
\pL shorthand for \p{L} is not supported).

29 April 2003 09:31

Table 9-1: Overview of .NET’s Regular-Expr ession Flavor

Character Shorthands

+ 114 (c) \a \b \e \f \n \r \t \v \octal \x## \u#### \cchar

Character Classes and Class-Like Constr ucts

+ 117 Classes: [˙˙˙] [ˆ˙˙˙]

+ 118 Any character except newline: dot (sometimes any character at all)

+ 119 (c) Class shorthands: \w \d \s \W \D \S

+ 119 (c) Unicode properties and blocks: \p{Pr op} \P{Pr op}

Anchor s and other Zero-Width Tests

+ 127 Start of line/string: ˆ \A

+ 127 End of line/string: $ \z \Z

+ 128 End of previous match: \G

+ 131 Word boundary: \b \B

+ 132 Lookar ound: (?=˙˙˙) (?!˙˙˙) (?<=˙˙˙) (?<!˙˙˙)

Comments and Mode Modifiers

+ 133 Mode modifiers: (?mods-mods) Modifiers allowed: x s m i n (+ 402)

+ 134 Mode-modified spans: (?mods-mods:˙˙˙)

+ 134 Comments: (?#˙˙˙)

Grouping, Capturing, Conditional, and Control

+ 135 Capturing parentheses: (˙˙˙) \1 \2 . . .

+ 430 Balanced grouping: (?<name-name>˙˙˙)

+ 137 Named capture, backrefer ence: (?<name>˙˙˙) \k<name>

+ 136 Gr ouping-only par entheses: (?:˙˙˙)

+ 137 Atomic grouping: (?>˙˙˙)

+ 138 Alter nation: <

+ 139 Gr eedy quantifiers: , + ? {n} {n,} {x,y}

+ 140 Lazy quantifiers: ,? +? ?? {n}? {n,}? {x,y}?

+ 138 Conditional: (?if then <else) – “if ” can be lookaround, (num), or (name)

(c) – may be used within a character class

Also not supported are the special properties \p{All}, \p{Assigned}, and
\p{Unassigned}. Instead, you might use !(?s: .) ", !\P{Cn} ", and !\p{Cn} ",
respectively.

• This package understands Unicode blocks as of Unicode Version 3.1. Addi-
tions and modifications since Version 3.1 are not known (+ 108).

Block names requir e the ‘Is’ prefix (see the table on page 123), and only the
raw form unador ned with spaces and underscores may be used. For example,
\p{IsRGreekRExtended} and \p{Is Greek Extended} ar e not allowed;
\p{IsGreekExtended} is requir ed.

.NET’s Regex Flavor 401

29 April 2003 09:31

402 Chapter 9: .NET

• \G matches the end of the pr evious match, despite the documentation’s claim
that it matches at the beginning of the curr ent match (+ 128).

• Both lookahead and lookbehind can employ arbitrary regular expressions. As
of this writing, the .NET regex engine is the only one that I know of that
allows lookbehind with a subexpression that can match an arbitrary amount of
text (+ 132).

• The RegexOptions.ExplicitCapture option (also available via the (?n)

mode modifier) turns off capturing for raw !(˙˙˙)" par entheses. Explicitly-named
captur es like !(?<num>\d+)" still work (+ 137). If you use named captures, this
option allows you to use the visually more pleasing !(˙˙˙)" for grouping instead
of !(?:˙˙˙)".

Table 9-2: The .NET Match and Regex Modes

RegexOptions option (?mode) Descr iption

.Singleline s Causes dot to match any character (+ 110)

.Multiline m Expands where !ˆ " and !$ " can match (+ 110)

.IgnorePatternWhitespace x Sets free-spacing and comment mode (+ 72)

.IgnoreCase i Turns on case-insensitive matching

.ExplicitCapture n Turns capturing off for !(˙˙˙)", so only !(?<name>˙˙˙)"

captur e

.ECMAScript Restricts !\w ", !\s ", and !\d " to match ASCII characters
only, and more (+ 406)

.RightToLeft The transmission applies the regex normally, but
in the opposite direction (starting at the end of the
string and moving toward the start). Unfortunately,
buggy. (+ 405)

.Compiled Spends extra time up front optimizing the regex so
it matches more quickly when applied (+ 404)

Additional Comments on the Flavor
A few issues merit longer discussion than a bullet point allows.

Named capture

.NET supports named capture (+ 137), through the !(?<name>˙˙˙)" or !(?’name’˙˙˙)"

syntax. Both syntaxes mean the same thing and you can use either freely, but I
pr efer the syntax with <˙˙˙>, as I believe it will be more widely used.

29 April 2003 09:31

You can backrefer ence the text matched by a named capture within the regex with
!\k<name>" or !\k’name’".

After the match (once a Match object has been generated; an overview of .NET’s
object model follows, starting on page 410), the text matched within the named
captur e is available via the Match object’s Groups(name) pr operty. (C# requir es
Groups[name] instead.)

Within a replacement string (+ 418), the results of named capture are available via
a ${name} sequence.

In order to allow all groups to be accessed numerically, which may be useful at
times, named-capture groups are also given numbers. They receive their numbers
after all the non-named ones receive theirs:

!(
1
\w)

1
(
3
?<Num>\d+)

3
(
2
\s+)

2
"

The text matched by the !\d+ " part of this example is available via both
Groups("Num") and Groups(3). It’s still just one group, but with two names.

An unfor tunate consequence
It’s not recommended to mix normal capturing parentheses and named captures,
but if you do, the way the capturing groups are assigned numbers has important
consequences that you should be aware of. The ordering becomes important
when capturing parentheses are used with Split (+ 419), and for the meaning of
‘$+’ in a replacement string (+ 418). Both currently have additional, unrelated
pr oblems that make them more or less broken anyway (although Microsoft is
working on a fix for the 2004 release of .NET).

Conditional tests

The if part of an !(? if then ;else)" conditional (+ 138) can be any type of look-
ar ound, or a captured group number or captured group name in parentheses.
Plain text (or a plain regex) in this location is automatically treated as positive
lookahead (that it, it has an implicit !(?=˙˙˙)" wrapped around it). This can lead to
an ambiguity: for instance, the !(Num) " of ! ˙˙˙(?(Num) then ;else)˙˙˙ " is turned into
!(?=Num) " (lookahead for ‘Num’) if there is no !(?<Num>˙˙˙)" named capture elsewher e
in the regex. If there is such a named capture, whether it was successful is the
result of the if.

I recommend not relying on “auto-lookaheadification.” Use the explicit !(?=˙˙˙)" to
make your intentions clearer to the human reader, and also to avert a surprise if
some future version of the regex engine adds additional if syntax.

.NET’s Regex Flavor 403

29 April 2003 09:31

404 Chapter 9: .NET

“Compiled” expressions

In earlier chapters, I use the word “compile” to describe the pre-application work
any regex system must do to check that a regular expression is valid, and to con-
vert it to an internal form suitable for its actual application to text. For this, .NET

regex terminology uses the word “parsing.” It uses two versions of “compile” to
refer to optimizations of that parsing phase.

Her e ar e the details, in order of increasing optimization:

• Parsing The first time a regex is seen during the run of a program, it must be
checked and converted into an internal form suitable for actual application by
the regex engine. This process is referr ed to as “compile” elsewhere in this
book (+ 241).

• On-the-Fly Compilation RegexOptions.Compiled is one of the options avail-
able when building a regex. Using it tells the regex engine to go further than
simply converting to the default internal form, but to compile it to low-level
MSIL (Micr osoft Inter mediate Language) code, which itself is then amenable to
being optimized even further into even faster native machine code by the JIT

(“Just-In-T ime” compiler) when the regex is actually applied.

It takes more time and memory to do this, but it allows the resulting regular
expr ession to work faster. These tradeoffs are discussed later in this section.

• Pre-Compiled Regex es A Regex object (or objects) can be encapsulated into
an assembly written to disk in a DLL (a Dynamically Loaded Library, i.e., a
shar ed library). This makes it available for general use in other programs. This
is called “compiling the assembly.” For more, see “Regex Assemblies” (+ 428).

When considering on-the-fly compilation with RegexOptions.Compiled, ther e ar e
important tradeoffs among initial startup time, ongoing memory usage, and regex
match speed:

Metr ic Without RegexOptions.Compiled With RegexOptions.Compiled

Startup time Faster Slower (by 60×)
Memory usage Low High (about 5-15k each)
Match speed Not as fast Up to 10× faster

The initial regex parsing (the default kind, without RegexOptions.Compiled) that
must be done the first time each regex is seen in the program is relatively fast.
Even on my clunky old 550MHz NT box, I benchmark about 1,500 complex com-
pilations/second. When RegexOptions.Compiled is used, that goes down to
about 25/second, and increases memory usage by about 10k bytes per regex.
Mor e importantly, that memory remains used for the life of the program — ther e’s
no way to unload it.

29 April 2003 09:31

It definitely makes sense to use RegexOptions.Compiled in time-sensitive areas
wher e pr ocessing speed is important, particularly for expressions that work with a
lot of text. On the other hand, it makes little sense to use it on simple regexes that
ar en’t applied to a lot of text. It’s less clear which is best for the multitude of situa-
tions in between — you’ll just have to weight the benefits and decide on a case-by-
case basis.

In some cases, it may make sense to encapsulate an application’s compiled
expr essions into its own DLL, as pre-compiled Regex objects. This uses less mem-
ory in the final program (the loading of the whole regex compilation package is
bypassed), and allows faster loading (since they’re compiled when the DLL is built,
you don’t have to wait for them to be compiled when you use them). A nice
bypr oduct of this is that the expressions are made available to other programs that
might wish to use them, so it’s a great way to make a personal regex library. See
“Cr eating Your Own Regex Library With an Assembly” on page 429.

Right-to-left matching

The concept of “backwards” matching (matching from right to left in a string,
rather than from left to right) has long intrigued regex developers. Perhaps the
biggest issue facing the developer is to define exactly what “right-to-left matching”
really means. Is the regex somehow reversed? Is the target text flipped? Or is it just
that the regex is applied normally from each position within the target string, with
the differ ence being that the transmission starts at the end of the string instead of
at the beginning, and moves backwards with each bump-along rather than
forward?

Just to think about it in concrete terms for a moment, consider applying !\d+ " to
the string ‘123 and 456’. We know a normal application matches ‘123’, and
instinct somehow tells us that a right-to-left application should match ‘456’. How-
ever, if the regex engine uses the semantics described at the end of the previous
paragraph, where the only differ ence is the starting point of the transmission and
the direction of the bump-along, the results may be surprising. In these semantics,
the regex engine works normally (“looking” to the right from where it’s started),
so the first attempt of !\d+ ", at ‘˙˙˙456’, doesn’t match. The second attempt, at ‘˙˙˙456’
does match, as the bump-along has placed it “looking at” the ‘6’, which certainly
matches !\d+ ". So, we have a final match of only the final ‘6’.

One of .NET’s regex options is RegexOptions.RightToLeft. What are its seman-
tics? The answer is: “that’s a good question.” The semantics are not documented,
and my own tests indicate only that I can’t pin them down. In many cases, such as
the ‘123 and 456’ example, it acts surprisingly intuitively (it matches ‘456’). How-
ever, it sometimes fails to find any match, and at other times finds a match that
seems to make no sense when compared with other results.

.NET’s Regex Flavor 405

29 April 2003 09:31

406 Chapter 9: .NET

If you have a need for it, you may find that RegexOptions.RightToLeft seems
to work exactly as you wish, but in the end, you use it at your own risk. Microsoft
is working on pinning down the semantics (to be released in the 2004 or 2005 ver-
sion of .NET), and so the semantics that you happen to see now may change.

Backslash-dig it ambiguities

When a backslash is followed by a number, it’s either an octal escape or a backref-
er ence. Which of the two it’s interpreted as, and how, depends on whether the
RegexOptions.ECMAScript option has been specified. If you don’t want to have
to understand the subtle differ ences, you can always use !\k<num>" for a backrefer-
ence, or start the octal escape with a zero (e.g., !\08 ") to ensur e it’s taken as one.
These work consistently, regardless of RegexOptions.ECMAScript being used
or not.

If RegexOptions.ECMAScript is not used, single-digit escapes from !\1 " thr ough
!\9 " ar e always backrefer ences, and an escaped number beginning with zero is
always an octal escape (e.g., !\012 " matches an ASCII linefeed character). If it’s not
either of these cases, the number is taken as a backrefer ence if it would “make
sense” to do so (i.e., if there are at least that many capturing parentheses in the
regex). Otherwise, so long as it has a value between \000 and \377, it’s taken as
an octal escape. For example, !\12 " is taken as a backrefer ence if there are at least
12 sets of capturing parentheses, or an octal escape otherwise.

The semantics for when RegexOptions.ECMAScript is specified is described in
the next section.

ECMAScr ipt mode

ECMAScript is a standardized version of JavaScript† with its own semantics of how
regular expressions should be parsed and applied. A .NET regex attempts to mimic
those semantics if created with the RegexOptions.ECMAScript option. If you
don’t know what ECMAScript is, or don’t need compatibility with it, you can safely
ignor e this section.

When RegexOptions.ECMAScript is in effect, the following apply:

• Only the following may be combined with RegexOptions.ECMAScript:

RegexOptions.IgnoreCase
RegexOptions.Multiline
RegexOptions.Compiled

• \w, \d, and \s (and \W, \D, and \S) change to ASCII-only matching.

† ECMA stands for “European Computer Manufacturers Association,” a group formed in 1960 to stan-
dardize aspects of the growing field of computers.

29 April 2003 09:31

• When a backslash-digit sequence is found in a regex, the ambiguity between
backr efer ence and octal escape changes to favor a backrefer ence, even if that
means having to ignore some of the trailing digits. For example, with !(˙˙˙)\10 ",
the !\10 " is taken as a backrefer ence to the first group, followed by a literal ‘0’.

Using .NET Regular Expressions
.NET regular expressions are power ful, clean, and provided through a complete
and easy-to-use class interface. But as wonderful a job that Microsoft did building
the package, the documentation is just the opposite — it’s horrifically bad. It’s woe-
fully incomplete, poorly written, disorganized, and sometimes even wrong. It took
me quite a while to figure the package out, so it’s my hope that the presentation
in this chapter makes the use of .NET regular expressions clear for you.

Regex Quickstar t
You can get quite a bit of use out of the .NET regex package without even know-
ing the details of its regex class model. Knowing the details lets you get more
infor mation mor e ef ficiently, but the following are examples of how to do simple
operations without explicitly creating any classes. These are just examples; all the
details follow shortly.

Any program that uses the regex library must have the line

Imports System.Text.RegularExpressions

at the beginning of the file (+ 409), so these examples assume that’s there.

The following examples all work with the text in the String variable TestStr. As
with all examples in this chapter, names I’ve chosen are in italic.

Quickstar t: Checking a string for match

This example simply checks to see whether a regex matches a string:

If Regex.IsMatch(TestStr, "ˆ\s+$")
Console.WriteLine("line is empty")

Else
Console.WriteLine("line is not empty")

End If

This example uses a match option:

If Regex.IsMatch(TestStr, "ˆsubject:", RegexOptions.IgnoreCase)
Console.WriteLine("line is a subject line")

Else
Console.WriteLine("line is not a subject line")

End If

Using .NET Regular Expressions 407

29 April 2003 09:31

408 Chapter 9: .NET

Quickstar t: Matching and getting the text matched

This example identifies the text actually matched by the regex. If there’s no match,
TheNum is set to an empty string.

Dim TheNum as String = Regex.Match(TestStr, "\d+").Value
If TheNum <> ""

Console.WriteLine("Number is: " & TheNum)
End If

This example uses a match option:

Dim ImgTag as String = Regex.Match(TestStr, "<img\b[ˆ>]+>", R
RegexOptions.IgnoreCase).Value

If ImgTag <> ""
Console.WriteLine("Image tag: " & ImgTag)

End If

Quickstar t: Matching and getting captured text

This example gets the first captured group (e.g., $1) as a string:

Dim Subject as String = R
Regex.Match(TestStr, "ˆSubject: (.+)").Groups(1).Value

If Subject <> ""
Console.WriteLine("Subject is: " & Subject)

End If

Note that C# uses Groups[1] instead of Groups(1).

Her e’s the same thing, using a match option:

Dim Subject as String = R
Regex.Match(TestStr, "ˆsubject: (.+)", R

RegexOptions.IgnoreCase).Groups(1).Value
If Subject <> ""

Console.WriteLine("Subject is: " & Subject)
End If

This example is the same as the previous, but using named capture:

Dim Subject as String = R
Regex.Match(TestStr, "ˆsubject: (?<Subj>.+)", R

RegexOptions.IgnoreCase).Groups("Subj").Value
If Subject <> ""

Console.WriteLine("Subject is: " & Subject)
End If

Quickstar t: Sear ch and replace

This example makes our test string “safe” to include within HTML, converting char-
acters special to HTML into HTML entities:

TestStr = Regex.Replace(TestStr, "&", "&")
TestStr = Regex.Replace(TestStr, "<", "<")
TestStr = Regex.Replace(TestStr, ">", ">")
Console.WriteLine("Now safe in HTML: " & TestStr)

29 April 2003 09:31

The replacement string (the third argument) is interpreted specially, as described
in the sidebar on page 418. For example, within the replacement string, ‘$&’ is
replaced by the text actually matched by the regex. Here’s an example that wraps
˙˙˙ ar ound capitalized words:

TestStr = Regex.Replace(TestStr, "\b[A-Z]\w+", "$&")
Console.WriteLine("Modified string: " & TestStr)

This example replaces ˙˙˙ (in a case-insensitive manner) with <I>˙˙˙</I>:

TestStr = Regex.Replace(TestStr, "(.+?)", "<I>$1</I>", R
RegexOptions.IgnoreCase)

Console.WriteLine("Modified string: " & TestStr)

Package Overview
You can get the most out .NET regular expressions by working with its rich and
convenient class structure. To give us an overview, here’s a complete console
application that shows a simple match using explicit objects:

Option Explicit On ’ These are not specifically requir ed to use regexes,
Option Strict On ’ but their use is good general practice.

’ Make regex-r elated classes easily available.
Imports System.Text.RegularExpressions

Module SimpleTest
Sub Main()

Dim SampleText as String = "this is the 1st test string"
Dim R as Regex = New Regex("\d+\w+") ’Compile the pattern.
Dim M as Match = R.match(SampleText) ’Check against a string.
If not M.Success

Console.WriteLine("no match")
Else

Dim MatchedText as String = M.Value ’Query the results . . .
Dim MatchedFrom as Integer = M.Index
Dim MatchedLen as Integer = M.Length
Console.WriteLine("matched [" & MatchedText & "]" & R

" from char#" & MatchedFrom.ToString() & R
" for " & MatchedLen.ToString() & " chars.")

End If
End Sub
End Module

When executed from a command prompt, it applies !\d+\w+ " to the sample text
and displays:

matched [1st] from char#12 for 3 chars.

Impor ting the regex namespace

Notice the Imports System.Text.RegularExpressions line near the top of the
pr ogram? That’s requir ed in any VB pr ogram that wishes to access the .NET regex
objects, to make them available to the compiler.

Using .NET Regular Expressions 409

29 April 2003 09:31

410 Chapter 9: .NET

The analogous statement in C# is:

using System.Text.RegularExpressions; // This is for C#

The example shows the use of the underlying raw regex objects. The two main
action lines:

Dim R as Regex = New Regex("\d+\w+") ’Compile the pattern.
Dim M as Match = R.Match(SampleText) ’Check against a string.

can also be combined, as:

Dim M as Match = Regex.Match(SampleText, "\d+\w+") ’Check pattern against string.

The combined version is easier to work with, as there’s less for the programmer to
type, and less objects to keep track of. It does, however, come with at a slight effi-
ciency penalty (+ 426). Over the coming pages, we’ll first look at the raw objects,
and then at the “convenience” functions like the Regex.Match static function, and
when it makes sense to use them.

For brevity’s sake, I’ll generally not repeat the following lines in examples that are
not complete programs:

Option Explicit On
Option Strict On
Imports System.Text.RegularExpressions

It may also be helpful to look back at some of VB examples earlier in the book,
on pages 96, 99, 204, 218, and 236.

Core Object Over view
Befor e getting into the details, let’s first take a step back and look the .NET regex
object model. An object model is the set of class structures through which regex
functionality is provided. .NET regex functionality is provided through seven
highly-interwoven classes, but in practice, you’ll generally need to understand only
the three shown visually in Figure 9-1 on the facing page, which depicts the
repeated application of !\s+(\d+) " to the string ‘May 16, 1998’.

Regex objects

The first step is to create a Regex object, as with:

Dim R as Regex = New Regex("\s+(\d+)")

Her e, we’ve made a regex object repr esenting !\s+(\d+) " and stored it in the R

variable. Once you’ve got a Regex object, you can apply it to text with its
Match(text) method, which retur ns infor mation on the first match found:

Dim M as Match = R.Match("May 16, 1998")

29 April 2003 09:31

"\s+(\d+)"
Constructor

Regex
Object

Match
Object

Index
Length

Value
Success

Group
Object

Index
Length

Value
Success

true
" 16"
3

3

Group
Object

Index
Length

Value
Success

true
"16"

2
4

Groups (1)

Groups.Count

2

Index
Length

Value
Success

Index
Length

Value
Success

true
" 1998"

5
7

Index
Length

Value
Success

true

4
8

Groups (1)

Groups.Count

2

NextMatch()

"1998"

NextMatch() Match.Empty
Object

Success

false

Match ("May 16, 1998")

Match
Object

Group
Object

Groups (0)Groups (0)

Group
Object

Figur e 9-1: .NET’s Regex-related object model

Match objects

A Regex object’s Match(˙˙˙) method provides information about a match result by
cr eating and retur ning a Match object. A Match object has a number of properties,
including Success (a Boolean value indicating whether the match was successful)
and Value (a copy of the text actually matched, if the match was successful). We’ll
look at the full list of Match pr operties later.

Among the details you can get about a match from a Match object is information
about the text matched within capturing parentheses. The Perl examples in earlier
chapters used Perl’s $1 variable to get the text matched within the first set of cap-
turing parentheses. .NET of fers two methods to retrieve this data: to get the raw
text, you can index into a Match object’s Groups pr operty, such as with
Groups(1).Value to get the equivalent of Perl’s $1. (Note: C# requir es a dif ferent
syntax, Groups[1].Value, instead.) Another approach is to use the Result

method, which is discussed starting on page 423.

Using .NET Regular Expressions 411

29 April 2003 09:31

412 Chapter 9: .NET

Group objects

The Groups(1) part in the previous paragraph actually refer ences a Group object,
and the subsequent .Value refer ences its Value pr operty (the text associated
with the group). There is a Group object for each set of capturing parentheses,
and a “virtual group,” number ed zer o, which holds the information about the over-
all match.

Thus, MatchObj.Value and MatchObj.Groups(0).Value ar e the same — a copy
of the entire text matched. It’s more concise and convenient to use the first,
shorter approach, but it’s important to know about the zeroth group because
MatchObj.Groups.Count (the number of groups known to the Match object)
includes it. The MatchObj.Groups.Count resulting from a successful match with
!\s+(\d+) " is two (the whole-match “zeroth” group, and the $1 gr oup).

Capture objects

Ther e is also a Capture object. It’s not used often, but it’s discussed starting on
page 431.

All results are computed at match time

When a regex is applied to a string, resulting in a Match object, all the results
(wher e it matched, what each capturing group matched, etc.) are calculated and
encapsulated into the Match object. Accessing properties and methods of the
Match object, including its Group objects (and their properties and methods)
mer ely fetches the results that have already been computed.

Core Object Details
Now that we’ve seen an overview, let’s look at the details. First, we’ll look at how
to create a Regex object, followed by how to apply it to a string to yield a Match

object, and how to work with that object and its Group objects.

In practice, you can often avoid having to explicitly create a Regex object, but it’s
good to be comfortable with them, so during this look at the core objects, I’ll
always explicitly create them. We’ll see later what shortcuts .NET pr ovides to make
things more convenient.

In the lists that follow, I don’t mention little-used methods that are mer ely inher-
ited from the Object class.

29 April 2003 09:31

Creating Regex Objects
The constructor for creating a Regex object is uncomplicated. It accepts either one
argument (the regex, as a string), or two arguments (the regex and a set of
options). Here’s a one-argument example:

Dim StripTrailWS = new Regex("\s+$") ’ for removing trailing whitespace

This just creates the Regex object, preparing it for use; no matching has been
done to this point.

Her e’s a two-argument example:

Dim GetSubject = new Regex("ˆsubject: (.+)", RegexOptions.IgnoreCase)

That passes one of the RegexOptions flags, but you can pass multiple flags if
they’r e OR’d together, as with:

Dim GetSubject = new Regex("ˆsubject: (.+)", R
RegexOptions.IgnoreCase OR RegexOptions.Multiline)

Catching exceptions

An ArgumentException err or is thrown if a regex with an invalid combination of
metacharacters is given. You don’t normally need to catch this exception when
using regular expressions you know to work, but it’s important to catch it if using
regular expressions from “outside” the program (e.g., entered by the user, or read
fr om a configuration file). Here’s an example:

Dim R As Regex
Try

R = New Regex(SearchRegex)
Catch e As ArgumentException

Console.WriteLine("+ERROR+ bad regex: " & e.ToString)
Exit Sub

End Try

Of course, depending on the application, you may want to do something other
than writing to the console upon detection of the exception.

Regex options

The following option flags are allowed when creating a Regex object:

RegexOptions.IgnoreCase

This option indicates that when the regex is applied, it should be done in a
case-insensitive manner (+ 109).

RegexOptions.IgnorePatternWhitespace

This option indicates that the regex should be parsed in a free-spacing and
comments mode (+ 110). If you use raw !#˙˙˙ " comments, be sure to include a
newline at the end of each logical line, or the first raw comment “comments
out” the entire rest of the regex.

Core Object Details 413

29 April 2003 09:31

414 Chapter 9: .NET

In VB.NET, this can be achieved with chr(10), as in this example:

Dim R as Regex = New Regex(R
"# Match a floating-point number ... " & chr(10) & R
" \d+(?:\.\d+)? # with a leading digit... " & chr(10) & R
" ; # or ... " & chr(10) & R
" \.\d+ # with a leading decimal point", R
RegexOptions.IgnorePatternWhitespace)

That’s cumbersome; in VB.NET, !(?#˙˙˙)" comments can be more convenient:

Dim R as Regex = New Regex(R
"(?# Match a floating-point number ...)" & R
" \d+(?:\.\d+)? (?# with a leading digit...)" & R
" ; (?# or ...)" & R
" \.\d+ (?# with a leading decimal point)", R
RegexOptions.IgnorePatternWhitespace)

RegexOptions.Multiline

This option indicates that the regex should be applied in an enhanced line-
anchor mode (+ 111). This allows !ˆ " and !$ " to match at embedded newlines in
addition to the normal beginning and end of string, respectively.

RegexOptions.Singleline

This option indicates that the regex should be applied in a dot-matches-all
mode (+ 110). This allows dot to match any character, rather than any charac-
ter except a newline.

RegexOptions.ExplicitCapture

This option indicates that even raw !(˙˙˙)" par entheses, which are nor mally cap-
turing parentheses, should not capture, but rather behave like !(?:˙˙˙)" gr oup-
ing-only non-capturing parentheses. This leaves named-capture !(?<name>˙˙˙)"

par entheses as the only type of capturing parentheses.

If you’re using named capture and also want non-capturing parentheses for
gr ouping, it makes sense to use normal !(˙˙˙)" par entheses and this option, as it
keeps the regex more visually clear.

RegexOptions.RightToLeft

This option sets the regex to a right-to-left match mode (+ 405).

RegexOptions.Compiled

This option indicates that the regex should be compiled, on the fly, to a
highly-optimized format, which generally leads to much faster matching. This
comes at the expense of increased compile time the first time it’s used, and
incr eased memory use for the duration of the program’s execution.

If a regex is going to be used just once, or sparingly, it makes little sense to
use RegexOptions.Compiled, since its extra memory remains used even
when a Regex object created with it has been disposed of. But if a regex is
used in a time-critical area, it’s probably advantageous to use this flag.

29 April 2003 09:31

You can see an example on page 236, where this option cuts the time for one
benchmark about in half. Also, see the discussion about compiling to an
assembly (+ 428).

RegexOptions.ECMAScript

This option indicates that the regex should be parsed in a way that’s compati-
ble with ECMAScript (+ 406). If you don’t know what ECMAScript is, or don’t
need compatibility with it, you can safely ignore this option.

RegexOptions.None

This is a “no extra options” value that’s useful for initializing a RegexOptions

variable, should you need to. As you decide options are requir ed, they can be
OR’d in to it.

Using Regex Objects
Just having a regex object is not useful unless you apply it, so the following meth-
ods swing it into action.

RegexObj.IsMatch(tar get) Retur n type: Boolean
RegexObj.IsMatch(tar get, of fset)

The IsMatch method applies the object’s regex to the tar get string, retur ning a
simple Boolean indicating whether the attempt is successful. Here’s an example:

Dim R as RegexObj = New Regex("ˆ\s+$")
+
+
+

If R.IsMatch(Line) Then
’ Line is blank . . .

+
+
+

Endif

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is first attempted.

RegexObj.Match(tar get) Retur n type: Match object
RegexObj.Match(tar get, of fset)
RegexObj.Match(tar get, of fset, maxlength)

The Match method applies the object’s regex to the tar get string, retur ning a
Match object. With this Match object, you can query information about the results
of the match (whether it was successful, the text matched, etc.), and initiate the
“next” match of the same regex in the string. Details of the Match object follow,
starting on page 421.

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is first attempted.

If you provide a maxlength argument, it puts matching into a special mode where
the maxlength characters starting of fset characters into the tar get string are taken

Core Object Details 415

29 April 2003 09:31

416 Chapter 9: .NET

as the entir e target string, as far as the regex engine is concerned. It pretends that
characters outside the range don’t even exist, so, for example, !ˆ " can match at of f-
set characters into the original tar get string, and !$ " can match at maxlength charac-
ters after that. It also means that lookaround can’t “see” the characters outside of
that range. This is all very differ ent fr om when only of fset is provided, as that
mer ely influences where the transmission begins applying the regex — the engine
still “sees” the entire target string.

This table shows examples that illustrate the meaning of of fset and maxlength :

Results when RegexObj is built with . . .
Method call !\d\d " ! ˆ\d\d " ! ˆ\d\d$ "

RegexObj.Match("May 16, 1998") match ‘16’ fail fail
RegexObj.Match("May 16, 1998", 9) match ‘99’ fail fail
RegexObj.Match("May 16, 1998", 9, 2) match ‘99’ match ‘99’ match ‘99’

RegexObj.Matches(tar get) Retur n type: MatchCollection
RegexObj.Matches(tar get, of fset)

The Matches method is similar to the Match method, except Matches retur ns a
collection of Match objects repr esenting all the matches in the tar get, rather than
just one Match object repr esenting the first match. The retur ned object is a
MatchCollection.

For example, after this initialization:

Dim R as New Regex("\w+")
Dim Target as String = "a few words"

this code snippet

Dim BunchOfMatches as MatchCollection = R.Matches(Target)
Dim I as Integer
For I = 0 to BunchOfMatches.Count - 1

Dim MatchObj as Match = BunchOfMatches.Item(I)
Console.WriteLine("Match: " & MatchObj.Value)

Next

pr oduces this output:

Match: a
Match: few
Match: words

The following example, which produces the same output, shows that you can dis-
pense with the MatchCollection object altogether:

Dim MatchObj as Match
For Each MatchObj in R.Matches(Target)

Console.WriteLine("Match: " & MatchObj.Value)
Next

29 April 2003 09:31

Finally, as a comparison, here’s how you can accomplish the same thing another
way, with the Match (rather than Matches) method:

Dim MatchObj as Match = R.Match(Target)
While MatchObj.Success

Console.WriteLine("Match: " & MatchObj.Value)
MatchObj = MatchObj.NextMatch()

End While

RegexObj.Replace(tar get, replacement) Retur n type: String
RegexObj.Replace(tar get, replacement, count)
RegexObj.Replace(tar get, replacement, count, of fset)

The Replace method does a search-and-r eplace on the tar get string, retur ning a
(possibly changed) copy of it. It applies the Regex object’s regular expression, but
instead of retur ning a Match object, it replaces the matched text. What the
matched text is replaced with depends on the replacement argument. The replace-
ment argument is overloaded; it can be either a string or a MatchEvaluator dele-
gate. If replacement is a string, it is interpreted according to the sidebar on the
next page. For example,

Dim RRCapWord as New Regex("\b[A-Z]\w+")
+
+
+

Text = RRCapWord.Replace(Text, "$1")

wraps each capitalized word with ˙˙˙.

If count is given, only that number of replacements is done. (The default is to do
all replacements). To replace just the first match found, for example, use a count
of one. If you know that there will be only one match, using an explicit count of
one is more efficient than letting the Replace mechanics go through the work of
trying to find additional matches. A count of -1 means “replace all” (which, again,
is the default when no count is given).

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is applied. Bypassed characters are copied through to
the result unchanged.

For example, this canonicalizes all whitespace (that is, reduces sequences of
whitespace down to a single space):

Dim AnyWS as New Regex("\s+")
+
+
+

Target = AnyWS.Replace(Target, " ")

This converts ‘some random spacing’ to ‘some random spacing’. The
following does the same, except it leaves any leading whitespace alone:

Dim AnyWS as New Regex("\s+")
Dim LeadingWS as New Regex("ˆ\s+")

+
+
+

Target = AnyWS.Replace(Target, " ", -1, LeadingWS.Match(Target).Length)

Core Object Details 417

29 April 2003 09:31

418 Chapter 9: .NET

This converts ‘ some random spacing’ to ‘ some random spacing’.
It uses the length of what’s matched by LeadingWS as the offset (as the count of
characters to skip) when doing the search and replace. It uses a convenient fea-
tur e of the Match object, retur ned her e by LeadingWS.Match(Target), that its
Length pr operty may be used even if the match fails. (Upon failure, the Length

pr operty has a value of zero, which is exactly what we need to apply AnyWS to the
entir e target.)

Special Per-Match Replacement Sequences
Both the Regex.Replace method and the Match.Result method accept a
“r eplacement” string that’s interpreted specially. Within it, the following
sequences are replaced by appropriate text from the match:

Sequence Replaced by

$& text matched by the regex (also available as $0)
$1, $2, . . . text matched by the corresponding set of capturing parentheses
${name} text matched by the corresponding named capture

$‘ text of the target string befor e the match location
$’ text of the target string after the match location
$$ a single ‘$’ character
$R a copy of the entire original target string
$+ (see text below)

The $+ sequence is fairly useless as currently implemented. Its origins lie
with Perl’s useful $+ variable, which refer ences the highest-numbered set of
capturing parentheses that actually participated in the match. (There’s an
example of it in use on page 202.) This .NET replacement-string $+, though,
mer ely refer ences the highest-numbered set of capturing parentheses in the
regex. It’s particularly useless in light of the capturing-parentheses renumber-
ing that’s automatically done when named captures are used (+ 403).

Any uses of ‘$’ in the replacement string in situations other than those
described in the table are left unmolested.

Using a replacement delegate
The replacement argument isn’t limited to a simple string. It can be a delegate
(basically, a pointer to a function). The delegate function is called after each match
to generate the text to use as the replacement. Since the function can do any pro-
cessing you want, it’s an extremely powerful replacement mechanism.

The delegate is of the type MatchEvaluator, and is called once per match. The
function it refers to should accept the Match object for the match, do whatever
pr ocessing you like, and retur n the text to be used as the replacement.

29 April 2003 09:31

As examples for comparison, the following two code snippets produce identical
results:

Target = R.Replace(Target, "<<$&>>"))

Function MatchFunc(ByVal M as Match) as String
return M.Result("<<$&>>")

End Function
Dim Evaluator as MatchEvaluator = New MatchEvaluator(AddressOf MatchFunc)

+
+
+

Target = R.Replace(Target, Evaluator)

Both snippets highlight each match by wrapping the matched text in <<˙˙˙>>. The
advantage of using a delegate is that you can include code as complex as you like
in computing the replacement. Here’s an example that converts Celsius tempera-
tur es to Fahrenheit:

Function MatchFunc(ByVal M as Match) as String
’Get numeric temperature from $1, then convert to Fahrenheit
Dim Celsius as Double = Double.Parse(M.Groups(1).Value)
Dim Fahrenheit as Double = Celsius + 9/5 + 32
Return Fahrenheit & "F" ’Append an "F", and retur n

End Function

Dim Evaluator as MatchEvaluator = New MatchEvaluator(AddressOf MatchFunc)
+
+
+

Dim RRTemp as Regex = New Regex("(\d+)C\b", RegexOptions.IgnoreCase)
Target = RRTemp.Replace(Target, Evaluator)

Given ‘Temp is 37C.’ in Target, it replaces it with ‘Temp is 98.6F.’.

RegexObj.Split(tar get) Retur n type: array of String
RegexObj.Split(tar get, count)
RegexObj.Split(tar get, count, of fset)

The Split method applies the object’s regex to the tar get string, retur ning an
array of the strings separated by the matches. Here’s a trivial example:

Dim R as New Regex("\.")
Dim Parts as String() = R.Split("209.204.146.22")

The R.Split retur ns the array of four strings (‘209’, ‘204’, ‘146’, and ‘22’) that are
separated by the three matches of !\." in the text.

If a count is provided, no more than count strings will be retur ned (unless captur-
ing parentheses are used — mor e on that in a bit). If count is not provided, Split
retur ns as many strings as are separated by matches. Providing a count may mean
that the regex stops being applied before the final match, and if so, the last string
has the unsplit remainder of the line:

Dim R as New Regex("\.")
Dim Parts as String() = R.Split("209.204.146.22", 2)

This time, Parts receives two strings, ‘209’ and ‘204.146.22’.

Core Object Details 419

29 April 2003 09:31

420 Chapter 9: .NET

If an of fset (an integer) is provided, that many characters in the target string are
bypassed before the regex is attempted. The bypassed text becomes part of the
first string retur ned (unless RegexOptions.RightToLeft has been specified, in
which case the bypassed text becomes part of the last string retur ned).

Using Split with capturing parentheses
If capturing parentheses of any type are used, additional entries for captured text
ar e usually inserted into the array. (We’ll see in what cases they might not be
inserted in a bit.) As a simple example, to separate a string like ‘2002-12-31’ or
‘04/12/2003’ into its component parts, you might split on ![-/] ", like:

Dim R as New Regex("[-/]")
Dim Parts as String() = R.Split(MyDate)

This retur ns a list of the three numbers (as strings). However, adding capturing
par entheses and using !([-/,])" as the regex causes Split to retur n five strings: if
MyDate contains ‘2002-12-31’, the strings are ‘2002’, ‘-’, ‘12’, ‘-’, and ‘31’. The
extra ‘-’ elements are from the per-captur e $1.

If there are multiple sets of capturing parentheses, they are inserted in their
numerical ordering (which means that all named captures come after all unnamed
captur es + 403).

Split works consistently with capturing parentheses so long as all sets of captur-
ing parentheses actually participate in the match. However, ther e’s a bug with the
curr ent version of .NET such that if there is a set of capturing parentheses that
doesn’t participate in the match, it and all higher-number ed sets don’t add an ele-
ment to the retur ned list.

As a somewhat contrived example, consider wanting to split on a comma with
optional whitespace around it, yet have the whitespace added to the list of ele-
ments retur ned. You might use !(\s+)?,(\s+)? " for this. When applied with
Split to ‘this , that’, four strings are retur ned, ‘this’, ‘ ’, ‘ ’, and ‘that’.
However, when applied to ‘this, that’, the inability of the first set of capturing
par entheses to match inhibits the element for it (and for all sets that follow) from
being added to the list, so only two strings are retur ned, ‘this’ and ‘that’. The
inability to know beforehand exactly how many strings will be retur ned per match
is a major shortcoming of the current implementation.

In this particular example, you could get around this problem simply by using
!(\s+),(\s+)" (in which both groups are guaranteed to participate in any overall
match). However, mor e complex expressions are not easily rewritten.

29 April 2003 09:31

RegexObj.GetGroupNames()
RegexObj.GetGroupNumbers()
RegexObj.GroupNameFromNumber(number)
RegexObj.GroupNumberFromName(name)

These methods allow you to query information about the names (both numeric
and, if named capture is used, by name) of capturing groups in the regex. They
don’t refer to any particular match, but merely to the names and numbers of
gr oups that exist in the regex. The sidebar on the next page shows an example of
their use.

RegexObj.ToString()
RegexObj.RightToLeft
RegexObj.Options

These allow you to query information about the Regex object itself (as opposed to
applying the regex object to a string). The ToString() method retur ns the pattern
string originally passed to the regex constructor. The RightToLeft pr operty
retur ns a Boolean indicating whether RegexOptions.RightToLeft was specified
with the regex. The Options pr operty retur ns the RegexOptions that are associ-
ated with the regex. The following table shows the values of the individual
options, which are added together when reported:

0 None 16 Singleline

1 IgnoreCase 32 IgnorePatternWhitespace

2 Multiline 64 RightToLeft

4 ExplicitCapture 256 ECMAScript

8 Compiled

The missing 128 value is for a Microsoft debugging option not available in the
final product.

The sidebar on the next page shows an example these methods in use.

Using Match Objects
Match objects are created by a Regex’s Match method, the Regex.Match static
function (discussed in a bit), and a Match object’s own NextMatch method. It
encapsulates all information relating to a single application of a regex. It has the
following properties and methods:

MatchObj.Success

This retur ns a Boolean indicating whether the match was successful. If not, the
object is a copy of the static Match.Empty object.

Core Object Details 421

29 April 2003 09:31

422 Chapter 9: .NET

Displaying Infor mation about a Regex Object
This displays what’s known about the Regex object in the variable R:

’Display information known about the Regex object in the variable R
Console.WriteLine("Regex is: " & R.ToString())
Console.WriteLine("Options are: " & R.Options)
If R.RightToLeft

Console.WriteLine("Is Right-To-Left: True")
Else

Console.WriteLine("Is Right-To-Left: False")
End If

Dim S as String
For Each S in R.GetGroupNames()

Console.WriteLine("Name """ & S & """ is Num #" & R
R.GroupNumberFromName(S))

Next
Console.WriteLine("---")
Dim I as Integer
For Each I in R.GetGroupNumbers()

Console.WriteLine("Num #" & I & " is Name """ & R
R.GroupNameFromNumber(I) & """")

Next

Run twice, once with each of the two Regex objects created with

New Regex("ˆ(\w+)://([ˆ/]+)(/\S+)")

New Regex("ˆ(?<proto>\w+)://(?<host>[ˆ/]+)(?<page>/\S+)",
RegexOptions.Compiled)

the following output is produced (with one regex cut off to fit the page):

Regex is: ˆ(\w+)://([ˆ/]+)(/\S+)
Option are: 0
Is Right-To-Left: False
Name "0" is Num #0
Name "1" is Num #1
Name "2" is Num #2
Name "3" is Num #3

Num #0 is Name "0"
Num #1 is Name "1"
Num #2 is Name "2"
Num #3 is Name "3"

Regex is: ˆ(?<proto>\w+)://(?<host> ⋅⋅⋅
Option are: 8
Is Right-To-Left: False
Name "0" is Num #0
Name "proto" is Num #1
Name "host" is Num #2
Name "page" is Num #3

Num #0 is Name "0"
Num #1 is Name "proto"
Num #2 is Name "host"
Num #3 is Name "page"

MatchObj.Value
MatchObj.ToString()

These retur n copies of the text actually matched.

29 April 2003 09:31

MatchObj.Length

This retur ns the length of the text actually matched.

MatchObj.Index

This retur ns an integer indicating the position in the target text where the match
was found. It’s a zero-based index, so it’s the number of characters from the start
(left) of the string to the start (left) of the matched text. This is true even if
RegexOptions.RightToLeft had been used to create the regex that generated
this Match object.

MatchObj.Groups

This property is a GroupCollection object, in which a number of Group objects
ar e encapsulated. It is a normal collection object, with a Count and Item pr oper-
ties, but it’s most commonly accessed by indexing into it, fetching an individual
Group object. For example, M.Groups(3) is the Group object related to the third
set of capturing parentheses, and M.Groups("HostName") is the group object for
the “Hostname” named capture (e.g., after the use of !(?<HostName>˙˙˙)" in a
regex).

Note that C# requir es M.Groups[3] and M.Groups["HostName"] instead.

The zeroth group repr esents the entire match itself. MatchObj.Groups(0).Value,
for example, is the same as MatchObj.Value.

MatchObj.NextMatch()

The NextMatch() method re-invokes the original regex to find the next match in
the original string, retur ning a new Match object.

MatchObj.Result(string)

Special sequences in the given string ar e pr ocessed as shown in the sidebar on
page 418, retur ning the resulting text. Here’s a simple example:

Dim M as Match = Regex.Match(SomeString, "\w+")
Console.WriteLine(M.Result("The first word is ’$&’"))

You can use this to get a copy of the text to the left and right of the match, with

M.Result("$‘") ’This is the text to the left of the match
M.Result("$’") ’This is the text to the right of the match

During debugging, it may be helpful to display something along the lines of:

M.Result("[$‘<$&>$’]"))

Given a Match object created by applying !\d+ " to the string ‘May 16, 1998’, it
retur ns ‘May <16>, 1998’, clearly showing the exact match.

Core Object Details 423

29 April 2003 09:31

424 Chapter 9: .NET

MatchObj.Synchronized()

This retur ns a new Match object that’s identical to the current one, except that it’s
safe for multi-threaded use.

MatchObj.Captures

The Captures pr operty is not used often, but is discussed starting on page 431.

Using Group Objects
A Group object contains the match information for one set of capturing parenthe-
ses (or, if a zer oth gr oup, for an entire match). It has the following properties and
methods:

GroupObj.Success

This retur ns a Boolean indicating whether the group participated in the match. Not
all groups necessarily “participate” in a successful overall match. For example, if
!(this)<(that) " matches successfully, one of the sets of parentheses is guaranteed
to have participated, while the other is guaranteed to have not. See the footnote
on page 138 for another example.

GroupObj.Value
GroupObj.ToString()

These both retur n a copy of the text captured by this group. If the match hadn’t
been successful, these retur n an empty string.

GroupObj.Length

This retur ns the length of the text captured by this group. If the match hadn’t been
successful, it retur ns zer o.

GroupObj.Index

This retur ns an integer indicating where in the target text the group match was
found. The retur n value is a zero-based index, so it’s the number of characters
fr om the start (left) of the string to the start (left) of the captured text. (This is true
even if RegexOptions.RightToLeft had been used to create the regex that gen-
erated this Match object.)

GroupObj.Captures

The Group object also has a Captures pr operty discussed starting on page 431.

29 April 2003 09:31

Static “Convenience” Functions
As we saw in the “Regex Quickstart” beginning on page 407, you don’t always
have to create explicit Regex objects. The following static functions allow you to
apply with regular expressions directly:

Regex.IsMatch(target, pattern)
Regex.IsMatch(target, pattern, options)

Regex.Match(target, pattern)
Regex.Match(target, pattern, options)

Regex.Matches(target, pattern)
Regex.Matches(target, pattern, options)

Regex.Replace(target, pattern, replacement)
Regex.Replace(target, pattern, replacement, options)

Regex.Split(target, pattern)
Regex.Split(target, pattern, options)

Inter nally, these are just wrappers around the core Regex constructor and methods
we’ve already seen. They construct a temporary Regex object for you, use it to call
the method you’ve requested, and then throw the object away. (Well, they don’t
actually throw it away—mor e on this in a bit.)

Her e’s an example:

If Regex.IsMatch(Line, "ˆ\s+$")
+
+
+

That’s the same as

Dim TemporaryRegex = New Regex("ˆ\s+$")
If TemporaryRegex.IsMatch(Line)

+
+
+

or, mor e accurately, as:

If New Regex("ˆ\s+$").IsMatch(Line)
+
+
+

The advantage of using these convenience functions is that they generally make
simple tasks easier and less cumbersome. They allow an object-oriented package
to appear to be a procedural one (+ 95). The disadvantage is that the patter n
must be reinspected each time.

If the regex is used just once in the course of the whole program’s execution, it
doesn’t matter from an efficiency standpoint whether a convenience function is
used. But, if a regex is used multiple times (such as in a loop, or a commonly-
called function), there’s some overhead involved in preparing the regex each time
(+ 241). The goal of avoiding this usually expensive overhead is the primary rea-
son you’d build a Regex object once, and then use it repeatedly later when actu-
ally checking text. However, as the next section shows, .NET of fers a way to have
the best of both worlds: procedural convenience with object-oriented efficiency.

Static “Convenience” Functions 425

29 April 2003 09:31

426 Chapter 9: .NET

Regex Caching
Having to always build and save a separate Regex object for every little regex
you’d like to use can be extremely cumbersome and inconvenient, so it’s wonder-
ful that the .NET regex package employs regex caching. If you use a pat-
ter n/option combination that has already been used during the execution of the
pr ogram, the internal Regex object that had been built the first time is reused, sav-
ing you the drudgery of having to save and manage the Regex object.

.NET’s regex caching seems to be very efficient, so I would feel comfortable using
the convenience functions in most places. There is a small amount of overhead, as
the cache must compare the pattern string and its list of options to those it already
has, but that’s a small tradeoff for the enhanced program readability of the less-
complicated approach that convenience functions offer. I’d still opt for building
and managing a raw Regex object in very time-sensitive situations, such as apply-
ing regexes in a tight loop.

Suppor t Functions
Besides the convenience functions described in the previous section, there are a
few other static support functions:

Match.Empty

This function retur ns a Match object that repr esents a failed match. It is perhaps
useful for initializing a Match object that you may or may not fill in later, but do
intend to query later. Her e’s a simple example:

Dim SubMatch as Match = Match.Empty ’Initialize, in case it’s not set in the loop below

+
+
+

Dim Line as String
For Each Line in EmailHeaderLines

’If this is the subject, save the match info for later . . .
Dim ThisMatch as Match = Regex.Match(Line, "ˆSubject:\s+(.+)", R

RegexOptions.IgnoreCase)
If ThisMatch.Success

SubMatch = ThisMatch
End If

+
+
+

Next
+
+
+

If SubMatch.Success
Console.WriteLine(SubMatch.Result("The subject is: $1"))

Else
Console.WriteLine("No subject!")

End If

If the string array EmailHeaderLines actually has no lines (or no Subject lines),
the loop that iterates through them won’t ever set SubMatch, so the inspection of

29 April 2003 09:31

SubMatch after the loop would result in a null refer ence exception if it hadn’t
somehow been initialized. So, it’s convenient to use Match.Empty as the initializer
in cases like this.

Regex.Escape(str ing)

Given a string, Regex.Escape(˙˙˙) retur ns a copy of the string with regex meta-
characters escaped. This makes the original string appropriate for inclusion in a
regex as a literal string.

For example, if you have input from the user in the string variable SearchTerm,
you might use it to build a regex with:

Dim UserRegex as Regex = New Regex("ˆ" & Regex.Escape(SearchTerm) & "$", R
RegexOptions.IgnoreCase)

This allows the search term to contain regular-expr ession metacharacters without
having them treated as such. If not escaped, a SearchTerm value of, say, ‘:-)’
would result in an ArgumentException being thrown (+ 413).

Regex.Unescape(str ing)

This odd little function accepts a string, and retur ns a copy with certain regex
character escape sequences interpreted, and other backslashes removed. For
example, if it’s passed ‘\:\-\)’, it retur ns ‘:-)’.

Character shorthands are also decoded. If the original string has ‘\n’, it’s actually
replaced with a newline in the retur ned string. Or if it has ‘\u1234’, the corre-
sponding Unicode character will be inserted into the string. All character short-
hands listed at the top of page 401 are interpr eted.

I can’t imagine a good regex-r elated use for Regex.Unescape, but it may be use-
ful as a general tool for endowing VB strings with some knowledge of escapes.

Regex.CompileToAssembly(˙˙˙)

This allows you to create an assembly encapsulating a Regex object — see the next
section.

Advanced .NET
The following pages cover a few features that haven’t fit into the discussion so far:
building a regex library with regex assemblies, using an interesting .NET-only
regex feature for matching nested constructs, and a discussion of the Capture

object.

Advanced .NET 427

29 April 2003 09:31

428 Chapter 9: .NET

Regex Assemblies
.NET allows you to encapsulate Regex objects into an assembly, which is useful in
cr eating a regex library. The example in the sidebar on the facing page shows
how to build one.

When the sidebar example executes, it creates the file JfriedlsRegexLibrary.DLL in
the project’s bin dir ectory.

I can then use that assembly in another project, after first adding it as a refer ence
via Visual Studio .NET’s Pr oject > Add Reference dialog.

To make the classes in the assembly available, I first import them:

Imports jfriedl

I can then use them just like any other class, as in this example::

Dim FieldRegex as CSV.GetField = New CSV.GetField ’This makes a new Regex object

+
+
+

Dim FieldMatch as Match = FieldRegex.Match(Line) ’Apply the regex to a string . . .
While FieldMatch.Success

Dim Field as String
If FieldMatch.Groups(1).Success
Field = FieldMatch.Groups("QuotedField").Value
Field = Regex.Replace(Field, """ "" ", """") ’replace two double quotes with one

Else
Field = FieldMatch.Groups("UnquotedField").Value

End If

Console.WriteLine("[" & Field & "]")
’ Can now work with ’Field’....

FieldMatch = FieldMatch.NextMatch
End While

In this example, I chose to import only from the jfriedl namespace, but could
have just as easily imported from the jfriedl.CSV namespace, which then would
allow the Regex object to be created with:

Dim FieldRegex as GetField = New GetField ’This makes a new Regex object

The differ ence is mostly a matter of style. You can also choose to not import any-
thing, but rather use them directly:

Dim FieldRegex as jfriedl.CSV.GetField = New jfriedl.CSV.GetField

This is a bit more cumbersome, but documents clearly where exactly the object is
coming from. Again, it’s a matter of style.

29 April 2003 09:31

Creating Your Own Regex Librar y With an Assembly
This example builds a small regex library. This complete program builds an
assembly (DLL) that holds three pre-built Regex constructors I’ve named
jfriedl.Mail.Subject, jfriedl.Mail.From, and jfriedl.CSV.GetField.

The first two are simple examples just to show how it’s done, but the com-
plexity of the final one really shows the promise of building your own
library. Note that you don’t have to give the RegexOptions.Compiled flag,
as that’s implied by the process of building an assembly.

See the text (+ 428) for how to use the assembly after it’s built.

Option Explicit On
Option Strict On

Imports System.Text.RegularExpressions
Imports System.Reflection

Module BuildMyLibrary
Sub Main()
’The calls to RegexCompilationInfo below provide the pattern, regex options, name within the class,
’class name, and a Boolean indicating whether the new class is public. The first class, for example,
’will be available to programs that use this assembly as "jfriedl.Mail.Subject", a Regex constructor.
Dim RCInfo() as RegexCompilationInfo = { R

New RegexCompilationInfo(R
"ˆSubject:\s+(.+)", RegexOptions.IgnoreCase, R
"Subject", "jfriedl.Mail", true), R

New RegexCompilationInfo(R
"ˆFrom:\s+(.+)", RegexOptions.IgnoreCase, R
"From", "jfriedl.Mail", true), R

New RegexCompilationInfo(R
"\G(?:ˆ;,) " & R
"(?: " & R
" (?# Either a double-quoted field...) " & R
" "" (?# field’s opening quote) " & R
" (?<QuotedField> (?> [ˆ""]+ ; """")+) " & R
" "" (?# field’s closing quote) " & R
" (?# ...or...) " & R
" ; " & R
" (?# ...some non-quote/non-comma text...) " & R
" (?<UnquotedField> [ˆ"",]+) " & R
")", R
RegexOptions.IgnorePatternWhitespace, R
"GetField", "jfriedl.CSV", true) R

}
’Now do the heavy lifting to build and write out the whole thing . . .
Dim AN as AssemblyName = new AssemblyName()
AN.Name = "JfriedlsRegexLibrary" ’This will be the DLL’s filename
AN.Version = New Version("1.0.0.0")
Regex.CompileToAssembly(RCInfo, AN) ’Build everything
End Sub
End Module

Advanced .NET 429

29 April 2003 09:31

430 Chapter 9: .NET

Matching Nested Constructs
Micr osoft has included an interesting innovation for matching balanced constructs
(historically, something not possible with a regular expression). It’s not particularly
easy to understand—this section is short, but be warned, it is very dense.

It’s easiest to understand with an example, so I’ll start with one:

Dim R As Regex = New Regex(" \(" & R
" (?> " & R
" [ˆ()]+ " & R
" ; " & R
" \((?<DEPTH>) " & R
" ; " & R
" \) (?<-DEPTH>) " & R
")+ " & R
" (?(DEPTH)(?!)) " & R
" \) ", R

RegexOptions.IgnorePatternWhitespace)

This matches the first properly-pair ed nested set of parentheses, such as the under-
lined portion of ‘before (nope (yes (here) okay) after’. The first parenthe-
sis isn’t matched because it has no associated closing parenthesis.

Her e’s the super-short overview of how it works:

1. With each ‘(’ matched, !(?<DEPTH>) " adds one to the regex’s idea of how
deep the parentheses are curr ently nested (at least, nested beyond the initial
!\(" at the start of the regex).

2. With each ‘)’ matched, !(?<-DEPTH>) " subtracts one from that depth.

3. !(?(DEPTH) (?!)) " ensur es that the depth is zero befor e allowing the final lit-
eral !\) " to match.

This works because the engine’s backtracking stack keeps track of successfully-
matched groupings. !(?<DEPTH>) " is just a named-capture version of !()", which is
always successful. Since it has been placed immediately after !\(", its success
(which remains on the stack until removed) is used as a marker for counting
opening parentheses.

Thus, the number of successful ‘DEPTH’ groupings matched so far is maintained on
the backtracking stack. We want to subtract from that whenever a closing paren-
theses is found. That’s accomplished by .NET’s special !(?<-DEPTH>) " construct,
which removes the most recent “successful DEPTH” notation from the stack. If it
tur ns out that there aren’t any, the !(?<-DEPTH>) " itself fails, thereby disallowing
the regex from over-matching an extra closing parenthesis.

Finally, !(?(DEPTH) (?!)) " is a normal conditional that applies !(?!) " if the ‘DEPTH’
gr ouping is currently successful. If it’s still successful by the time we get here,
ther e was an unpaired opening parenthesis whose success had never been

29 April 2003 09:31

subtracted by a balancing !(?<-DEPTH>) ". If that’s the case, we want to exit the
match (we don’t want to match an unbalanced sequence), so we apply !(?!) ",
which is normal negative lookahead of an empty subexpression, and guaranteed
to fail.

Phew! That’s how to match nested constructs with .NET regular expressions.

Capture Objects
Ther e’s an additional component to .NET’s object model, the Capture object,
which I haven’t discussed yet. Depending on your point of view, it either adds an
inter esting new dimension to the match results, or adds confusion and bloat.

A Capture object is almost identical to a Group object in that it repr esents the text
matched within a set of capturing parentheses. Like the Group object, it has meth-
ods for Value (the text matched), Length (the length of the text matched), and
Index (the zero-based number of characters into the target string that the match
was found).

The main differ ence between a Group object and a Capture object is that each
Group object contains a collection of Captures repr esenting all the inter mediary
matches by the group during the match, as well as the final text matched by the
gr oup.

Her e’s an example with !ˆ(..)+ " applied to ‘abcdefghijk’:

Dim M as Match = Regex.Match("abcdefghijk", "ˆ(..)+")

The regex matches four sets of !(..) ", which is most of the string: ‘abcdefghijk’.
Since the plus is outside of the parentheses, they recaptur e with each iteration of
the plus, and are left with only ‘ij’ (that is, M.Groups(1).Value is ‘ij’). How-
ever, that M.Groups(1) also contains a collection of Captures repr esenting the
complete ‘ab’, ‘cd’, ‘ef’, ‘gh’, and ‘ij’ that !(..) " walked through during the match:

M.Groups(1).Captures(0).Value is ‘ab’
M.Groups(1).Captures(1).Value is ‘cd’
M.Groups(1).Captures(2).Value is ‘ef’
M.Groups(1).Captures(3).Value is ‘gh’
M.Groups(1).Captures(4).Value is ‘ij’
M.Groups(1).Captures.Count is 5.

You’ll notice that the last capture has the same ‘ij’ value as the overall match,
M.Groups(1).Value. It tur ns out that the Value of a Group is really just a short-
hand notation for the group’s final capture. M.Groups(1).Value is really:

M.Groups(1).Captures(M.Groups(1).Captures.Count - 1).Value

Advanced .NET 431

29 April 2003 09:31

432 Chapter 9: .NET

Her e ar e some additional points about captures:

• M.Groups(1).Captures is a CaptureCollection, which, like any collection,
has Items and Count pr operties. However, it’s common to forego the Items

pr operty and index directly through the collection to its individual items, as
with M.Groups(1).Captures(3) (M.Groups[1].Captures[3] in C#).

• A Capture object does not have a Success method; check the Group’s
Success instead.

• So far, we’ve seen that Capture objects are available from a Group object.
Although it’s not particularly useful, a Match object also has a Captures pr op-
erty. M.Captures gives direct access to the Captures pr operty of the zeroth
gr oup (that is, M.Captures is the same as M.Groups(0).Captures). Since the
zer oth gr oup repr esents the entire match, there are no iterations of it “walking
thr ough” a match, so the zeroth captured collection always has only one
Capture. Since they contain exactly the same information as the zeroth
Group, both M.Captures and M.Groups(0).Captures ar e not particularly
useful.

.NET’s Capture object is an interesting innovation that appears somewhat more
complex and confusing than it really is by the way it’s been “overly integrated”
into the object model. After getting past the .NET documentation and actually
understanding what these objects add, I’ve got mixed feelings about them. On one
hand, it’s an interesting innovation that I’d like to get to know. Uses for it don’t
immediately jump to mind, but that’s likely because I’ve not had the same years of
experience with it as I have with traditional regex features.

On the other hand, the construction of all these extra capture groups during a
match, and then their encapsulation into objects after the match, seems an effi-
ciency burden that I wouldn’t want to pay unless I’d requested the extra informa-
tion. The extra Capture gr oups won’t be used in the vast majority of matches, but
as it is, all Group and Capture objects (and their associated GroupCollection

and CaptureCollection objects) are built when the Match object is built. So,
you’ve got them whether you need them or not; if you can find a use for the
Capture objects, by all means, use them.

29 April 2003 09:31

