
Preface

This book is about a powerful tool called “regular expressions”. It teaches you how
to use regular expressions to solve problems and get the most out of tools and
languages that provide them. Most documentation that mentions regular expres-
sions doesn’t even begin to hint at their power, but this book is about mastering
regular expressions.

Regular expressions are available in many types of tools (editors, word processors,
system tools, database engines, and such), but their power is most fully exposed
when available as part of a programming language. Examples include Java and
JScript, Visual Basic and VBScript, JavaScript and ECMAScript, C, C++, C#, elisp, Perl,
Python, Tcl, Ruby, PHP, sed, and awk. In fact, regular expressions are the very
heart of many programs written in some of these languages.

Ther e’s a good reason that regular expressions are found in so many diverse lan-
guages and applications: they are extr emely power ful. At a low level, a regular
expr ession describes a chunk of text. You might use it to verify a user’s input, or
perhaps to sift through large amounts of data. On a higher level, regular expres-
sions allow you to master your data. Control it. Put it to work for you. To master
regular expressions is to master your data.

The Need for This Book
I finished the first edition of this book in late 1996, and wrote it simply because
ther e was a need. Good documentation on regular expressions just wasn’t avail-
able, so most of their power went untapped. Regular-expr ession documentation
was available, but it centered on the “low-level view.” It seemed to me that they
wer e analogous to showing someone the alphabet and expecting them to learn to
speak.

xv

27 April 2003 17:10

xvi Preface

Why I’ve Written the Second Edition
In the five and a half years since the first edition of this book was published, the
world of regular expressions expanded considerably. The regular expressions of
almost every tool and language became more power ful and expressive. Perl,
Python, Tcl, Java, and Visual Basic all got new regular-expr ession backends. New
languages with regular expression support, like Ruby, PHP, and C#, were devel-
oped and became popular. During all this time, the basic core of the book — how
to truly understand regular expressions and how to get the most from them —
remained as important and relevant as ever.

Gradually, the first edition started to show its age. It needed updating to reflect the
new languages and features, as well as the expanding role that regular expressions
play in today’s Internet world. When I decided to update the first edition, it was
with a promise to my wife that it would take no more than three months. Two
years later, luckily still married, almost the entire book has been rewritten from
scratch. It’s good, though, that it took so long, for it brought me into 2002, a par-
ticularly active year for regular expressions. In early 2002, both Java 1.4 (with
java.util.regex) and Microsoft’s .NET wer e released, and Perl 5.8 was released
that summer. They are all covered fully in this book.

Intended Audience
This book will interest anyone who has an opportunity to use regular expressions.
If you don’t yet understand the power that regular expressions can provide, you
should benefit greatly as a whole new world is opened up to you. This book
should expand your understanding, even if you consider yourself an accomplished
regular-expr ession expert. After the first edition, it wasn’t uncommon for me to
receive an email that started “I thought I knew regular expressions until I read
Mastering Regular Expressions. Now I do.”

Pr ogrammers working on text-related tasks, such as web programming, will find
an absolute gold mine of detail, hints, tips, and understanding that can be put to
immediate use. The detail and thoroughness is simply not found anywhere else.

Regular expressions are an idea—one that is implemented in various ways by vari-
ous utilities (many, many more than are specifically presented in this book). If you
master the general concept of regular expressions, it’s a short step to mastering a
particular implementation. This book concentrates on that idea, so most of the
knowledge presented here transcends the utilities and languages used to present
the examples.

27 April 2003 17:10

How to Read This Book
This book is part tutorial, part refer ence manual, and part story, depending on
when you use it. Readers familiar with regular expressions might feel that they can
immediately begin using this book as a detailed refer ence, flipping directly to the
section on their favorite utility. I would like to discourage that.

To get the most out of this book, read the first six chapters as a story. I have found
that certain habits and ways of thinking can be a great help to reaching a full
understanding, but such things are absorbed over pages, not merely memorized
fr om a list.

This book tells a story, but one with many details. Once you’ve read the story to
get the overall picture, this book is also useful as a refer ence. The last three chap-
ters (covering specifics of Perl, Java, and .NET) rely heavily on your having read
the first six chapters. To help you get the most from each part, I’ve used cross ref-
er ences liberally, and I’ve worked hard to make the index as useful as possible.
(Cr oss refer ences ar e often presented as “+” followed by a page number.)

Until you read the full story, this book’s use as a refer ence makes little sense.
Befor e reading the story, you might look at one of the tables, such as the chart on
page 91, and think it presents all the relevant information you need to know. But
a great deal of background information does not appear in the charts themselves,
but rather in the associated story. Once you’ve read the story, you’ll have an
appr eciation for the issues, what you can remember off the top of your head, and
what is important to check up on.

Organization
The nine chapters of this book can be logically divided into roughly three parts.
Her e’s a quick overview:

The Introduction
Chapter 1 introduces the concept of regular expressions.
Chapter 2 takes a look at text processing with regular expressions.
Chapter 3 provides an overview of features and utilities, plus a bit of history.

The Details
Chapter 4 explains the details of how regular expressions work.
Chapter 5 works through examples, using the knowledge from Chapter 4.
Chapter 6 discusses efficiency in detail.

Tool-Specific Infor mation
Chapter 7 covers Perl regular expressions in detail.
Chapter 8 looks at regular-expr ession packages for Java.
Chapter 9 looks at .NET’s language-neutral regular-expr ession package.

Preface xvii

27 April 2003 17:10

xviii Preface

The Introduction
The introduction elevates the absolute novice to “issue-aware” novice. Readers
with a fair amount of experience can feel free to skim the early chapters, but I par-
ticularly recommend Chapter 3 even for the grizzled expert.

• Chapter 1, Intr oduction to Regular Expressions, is gear ed toward the complete
novice. I introduce the concept of regular expressions using the widely avail-
able program egr ep, and offer my perspective on how to think regular expres-
sions, instilling a solid foundation for the advanced concepts presented in later
chapters. Even readers with former experience would do well to skim this first
chapter.

• Chapter 2, Extended Introductory Examples, looks at real text processing in a
pr ogramming language that has regular-expr ession support. The additional
examples provide a basis for the detailed discussions of later chapters, and
show additional important thought processes behind crafting advanced regular
expr essions. To provide a feel for how to “speak in regular expressions,” this
chapter takes a problem requiring an advanced solution and shows ways to
solve it using two unrelated regular-expr ession–wielding tools.

• Chapter 3, Overview of Regular Expression Features and Flavors, provides an
overview of the wide range of regular expressions commonly found in tools
today. Due to their turbulent history, current commonly-used regular-expr es-
sion flavors can differ greatly. This chapter also takes a look at a bit of the his-
tory and evolution of regular expressions and the programs that use them. The
end of this chapter also contains the “Guide to the Advanced Chapters.” This
guide is your road map to getting the most out of the advanced material that
follows.

The Details
Once you have the basics down, it’s time to investigate the how and the why. Like
the “teach a man to fish” parable, truly understanding the issues will allow you to
apply that knowledge whenever and wherever regular expressions are found.

• Chapter 4, The Mechanics of Expression Processing, ratchets up the pace sev-
eral notches and begins the central core of this book. It looks at the important
inner workings of how regular expression engines really work from a practi-
cal point of view. Understanding the details of how regular expressions are
handled goes a very long way toward allowing you to master them.

• Chapter 5, Practical Regex Techniques, then puts that knowledge to high-level,
practical use. Common (but complex) problems are explor ed in detail, all with
the aim of expanding and deepening your regular-expr ession experience.

27 April 2003 17:10

• Chapter 6, Crafting an Efficient Expression, looks at the real-life efficiency
ramifications of the regular expressions available to most programming lan-
guages. This chapter puts information detailed in Chapters 4 and 5 to use for
exploiting an engine’s strengths and stepping around its weaknesses.

Tool-Specific Infor mation
Once the lessons of Chapters 4, 5, and 6 are under your belt, there is usually little
to say about specific implementations. However, I’ve devoted an entire chapter to
each of three popular systems:

• Chapter 7, Perl, closely examines regular expressions in Perl, arguably the
most popular regular-expr ession–laden pr ogramming language in use today. It
has only four operators related to regular expressions, but their myriad of
options and special situations provides an extremely rich set of programming
options — and pitfalls. The very richness that allows the programmer to move
quickly from concept to program can be a minefield for the uninitiated. This
detailed chapter clears a path.

• Chapter 8, Java, surveys the landscape of regular-expr ession packages avail-
able for Java. Points of comparison are discussed, and two packages with
notable strengths are cover ed in more detail.

• Chapter 9, .NET, is the documentation for the .NET regular-expr ession library
that Microsoft neglected to provide. Whether using VB.NET, C#, C++, JScript,
VBscript, ECMAScript, or any of the other languages that use .NET components,
this chapter provides the details you need to employ .NET regular-expr essions
to the fullest.

Typog raphical Conventions
When doing (or talking about) detailed and complex text processing, being pre-
cise is important. The mere addition or subtraction of a space can make a world of
dif ference, so I’ve used the following special conventions in typesetting this book:

• A regular expression generally appears like !this ". Notice the thin corners
which flag “this is a regular expression.” Literal text (such as that being
searched) generally appears like ‘this’. At times, I’ll leave off the thin corners
or quotes when obviously unambiguous. Also, code snippets and screen shots
ar e always presented in their natural state, so the quotes and corners are not
used in such cases.

• I use visually distinct ellipses within literal text and regular expressions. For
example [˙˙˙] repr esents a set of square brackets with unspecified contents,
while [. . .] would be a set containing three periods.

Preface xix

27 April 2003 17:10

xx Preface

• Without special presentation, it is virtually impossible to know how many
spaces are between the letters in “a b”, so when spaces appear in regular
expr essions and selected literal text, they are presented with the ‘ ’ symbol.
This way, it will be clear that there are exactly four spaces in ‘a b’.

I also use visual tab, newline, and carriage-retur n characters. Here’s a sum-
mary of the four:

a space character
2 a tab character
1 a newline character
| a carriage-r eturn character

• At times, I use underlining or shade the background to highlight parts of literal
text or a regular expression. In this example the underline shows where in the
text the expression actually matches:

Because !cat " matches ‘It indicates your cat is˙˙˙’ instead of the
word ‘cat’, we realize . . .

In this example the underlines highlight what has just been added to an
expr ession under discussion:

To make this useful, we can wrap !Subject;Date " with parentheses,
and append a colon and a space. This yields !(Subject;Date): ".

• This book is full of details and examples, so to help you get the most out of it,
I’ve provided an extensive set of cross refer ences. They often appear in the
text in a “+123” notation, which means “see page 123.” For example, it might
appear like “ . . . is described in Table 8-1 (+ 373).”

Exer cises
Occasionally, and particularly in the early chapters, I’ll pose a question to highlight
the importance of the concept under discussion. They’re not there just to take up
space; I really do want you to try them before continuing. Please. So as not to
dilute their importance, I’ve sprinkled only a few throughout the entire book. They
also serve as checkpoints: if they take more than a few moments, it’s probably
best to go over the relevant section again before continuing on.

To help entice you to actually think about these questions as you read them, I’ve
made checking the answers a breeze: just turn the page. Answers to questions
marked with v ar e always found by turning just one page. This way, they’re out
of sight while you think about the answer, but are within easy reach.

27 April 2003 17:10

Links, Code, Errata, and Contacts
I lear ned the hard way with the first edition that URLs change more quickly than a
printed book can be updated, so rather than providing an appendix of URLs, I’ll
pr ovide just one:

http://regex.info/

Ther e you can find regular-expr ession links, many of the code snippets from this
book, a searchable index, and much more. In the unlikely event this book con-
tains an error :-), the errata will be available as well.

If you find an error in this book, or just want to drop me a note, you can contact
me at jfriedl@regex.info.

The publisher can be contacted at:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)
bookquestions@oreilly.com

For more infor mation about books, conferences, Resource Centers, and the
O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

Personal Comments and
Acknowledgments
Writing the first edition of this book was a grueling task that took two and a half
years and the help of many people. After the toll it took on my health and sanity, I
pr omised that I’d never put myself through such an experience again.

I’ve many people to thank for helping me break that promise. Foremost is my
wife, Fumie. If you find this book useful, thank her; without her support and
understanding, I would have never had the sanity to make it through what turned
out to be almost a two year complete rewrite.

I also appreciate the support of Yahoo! Inc., where I have enjoyed slinging regular
expr essions for five years, and my manager Mike Bennett. His flexibility and
understanding allowed this project to happen.

Preface xxi

27 April 2003 17:10

xxii Preface

While researching and writing this book, many people helped educate me on lan-
guages or systems I didn’t know, and more still reviewed and corrected drafts as
the manuscript developed. In particular, I’d like to thank my brother, Stephen
Friedl, for his meticulous and detailed reviews of the manuscript. The book is
much better because of them.

I’d also like to thank William F. Maton, Dean Wilson, Derek Balling, Jarkko
Hietaniemi, Jeremy Zawodny, Ethan Nicholas, Kasia Trapszo, Jeffr ey Papen, Dr.
Yadong Li, Daniel F. Savar ese, David Flanagan, Kristine Rudkin, Shawn Purcell,
Josh Woodward, Ray Goldberger, and my editor, Andy Oram. Also thanks to
O’Reilly’s Linda Mui for navigating this book through the pre-publication minefield
and keeping the troops rallied, and Jessamyn Reed for creating the new figures
this edition requir ed.

Special thanks for providing an insider’s look at Java go to Mike “madbot”
McCloskey, Mark Reinhold, and Dr. Clif f Click, all of Sun Microsystems. For .NET

insight, I’d like to thank David Gutierrez and Kit George, of Microsoft.

I’d like to thank Dr. Ken Lunde of Adobe Systems, who created custom characters
and fonts for a number of the typographical aspects of this book. The Japanese
characters are from Adobe Systems’ Heisei Mincho W3 typeface, while the Korean
is from the Korean Ministry of Culture and Sports Munhwa typeface. It’s also Ken
who originally gave me the guiding principle that governs my writing: “you do the
research so your readers don’t have to.”

For help in setting up the server for http://regex.info, I’d like to thank Jeffr ey
Papen and Peak Web Hosting (http://www.PeakWebhosting.com/).

27 April 2003 17:10

