
3
Over view of

Regular Expression
Features and Flavors

Now that you have a feel for regular expressions and a few diverse tools that use
them, you might think we’re ready to dive into using them wherever they’re
found. But even a simple comparison among the egr ep versions of the first chapter
and the Perl and Java in the previous chapter shows that regular expressions and
the way they’re used can vary wildly from tool to tool.

When looking at regular expressions in the context of their host language or tool,
ther e ar e thr ee br oad issues to consider:

• What metacharacters are supported, and their meaning. Often called the regex
“flavor.”

• How regular expressions “interface” with the language or tool, such as how to
specify regular-expr ession operations, what operations are allowed, and what
text they operate on.

• How the regular-expr ession engine actually goes about applying a regular
expr ession to some text. The method that the language or tool designer uses
to implement the regular-expr ession engine has a strong influence on the
results one might expect from any given regular expression.

Regular Expressions and Cars

The considerations just listed parallel the way one might think while shopping for
a car. With regular expressions, the metacharacters are the first thing you notice,
just as with a car it’s the body shape, shine, and nifty features like a CD player and
leather seats. These are the types of things you’ll find splashed across the pages of
a glossy brochur e, and a list of metacharacters like the one on page 32 is the reg-
ular-expr ession equivalent. It’s important information, but only part of the story.

83

29 April 2003 09:19

84 Chapter 3: Over view of Regular Expression Features and Flavors

How regular expressions interface with their host program is also important. The
inter face is partly cosmetic, as in the syntax of how to actually provide a regular
expr ession to the program. Other parts of the interface are mor e functional, defin-
ing what operations are supported, and how convenient they are to use. In our car
comparison, this would be how the car “interfaces” with us and our lives. Some
issues might be cosmetic, such as what side of the car you put gas in, or whether
the windows are power ed. Others might be a bit more important, such as if it has
an automatic or manual transmission. Still others deal with functionality: can you
fit the thing in your garage? Can you transport a king-size mattress? Skis? Five
adults? (And how easy is it for those five adults to get in and out of the car—easier
with four doors than with two.) Many of these issues are also mentioned in the
glossy brochur e, although you might have to read the small print in the back to
get all the details.

The final concern is about the engine, and how it goes about its work to turn the
wheels. Here is wher e the analogy ends, because with cars, people tend to under-
stand at least the minimum requir ed about an engine to use it well: if it’s a gaso-
line engine, they won’t put diesel fuel into it. And if it has a manual transmission,
they won’t forget to use the clutch. But, in the regular-expr ession world, even the
most minute details about how the regex engine goes about its work, and how
that influences how expressions should be crafted and used, are usually absent
fr om the documentation. However, these details are so important to the practical
use of regular expressions that the entire next chapter is devoted to them.

In This Chapter

As the title might suggest, this chapter provides an overview of regular expression
featur es and flavors. It looks at the types of metacharacters commonly available,
and some of the ways regular expressions interface with the tools they’re part of.
These are the first two points mentioned at the chapter’s opening. The third point
— how a regex engine goes about its work, and what that means to us in a practi-
cal sense—is covered in the next few chapters.

One thing I should say about this chapter is that it does not try to provide a refer-
ence for any particular tool’s regex features, nor does it teach how to use regexes
in any of the various tools and languages mentioned as examples. Rather, it
attempts to provide a global perspective on regular expressions and the tools that
implement them. If you lived in a cave using only one particular tool, you could
live your life without caring about how other tools (or other versions of the same
tool) might act differ ently. Since that’s not the case, knowing something about
your utility’s computational pedigree adds interesting and valuable insight.

29 April 2003 09:19

A Casual Stroll Across the Regex Landscape
I’d like to start with the story about the evolution of some regular expression fla-
vors and their associated programs. So, grab a hot cup (or frosty mug) of your
favorite brewed beverage and relax as we look at the sometimes wacky history
behind the regular expressions we have today. The idea is to add color to our
regex understanding, and to develop a feeling as to why “the way things are” are
the way things are. There are some footnotes for those that are inter ested, but for
the most part, this should be read as a light story for enjoyment.

The Origins of Regular Expressions
The seeds of regular expressions were planted in the early 1940s by two neuro-
physiologists, Warr en McCulloch and Walter Pitts, who developed models of how
they believed the nervous system worked at the neuron level.† Regular expressions
became a reality several years later when mathematician Stephen Kleene formally
described these models in an algebra he called regular sets. He devised a simple
notation to express these regular sets, and called them regular expressions.

Thr ough the 1950s and 1960s, regular expressions enjoyed a rich study in theoreti-
cal mathematics circles. Robert Constable has written a good summary‡ for the
mathematically inclined.

Although there is evidence of earlier work, the first published computational use
of regular expressions I have actually been able to find is Ken Thompson’s 1968
article Regular Expression Search Algorithm § in which he describes a regular-
expr ession compiler that produced IBM 7094 object code. This led to his work on
qed, an editor that formed the basis for the Unix editor ed.

ed ’s regular expressions were not as advanced as those in qed, but they were the
first to gain widespread use in non-technical fields. ed had a command to display
lines of the edited file that matched a given regular expression. The command,
“ g/Regular Expression/p ”, was read “Global Regular Expr ession Print.” This particu-
lar function was so useful that it was made into its own utility, gr ep (after which
egr ep —extended gr ep —was later modeled).

† “A logical calculus of the ideas imminent in nervous activity,” first published in Bulletin of Math. Bio-
physics 5 (1943) and later reprinted in Embodiments of Mind (MIT Pr ess, 1965). The article begins
with an interesting summary of how neurons behave (did you know that intra-neuron impulse
speeds can range from 1 all the way to 150 meters per second?), and then descends into a pit of for-
mulae that is, literally, all Greek to me.

‡ Robert L. Constable, “The Role of Finite Automata in the Development of Modern Computing The-
ory,” in The Kleene Symposium, Eds. Barwise, Keisler, and Kunen (North-Holland Publishing Com-
pany, 1980), 61–83.

§ Communications of the ACM, Vol.11, No. 6, June 1968.

A Casual Stroll Across the Regex Landscape 85

29 April 2003 09:19

86 Chapter 3: Over view of Regular Expression Features and Flavors

Grep ’s metacharacter s

The regular expressions supported by gr ep and other early tools were quite limited
when compared to egr ep ’s. The metacharacter + was supported, but + and ? wer e
not (the latter’s absence being a particularly strong drawback). gr ep ’s capturing
metacharacters were \(˙˙˙\), with unescaped parentheses repr esenting literal text.†

gr ep supported line anchors, but in a limited way. If ˆ appear ed at the beginning
of the regex, it was a metacharacter matching the beginning of the line. Otherwise,
it wasn’t a metacharacter at all and just matched a literal circumflex (also called a
“car et”). Similarly, $ was the end-of-line metacharacter only at the end of the
regex. The upshot was that you couldn’t do something like !end$;ˆstart ". But
that’s okay, since alternation wasn’t supported either!

The way metacharacters interact is also important. For example, perhaps gr ep ’s
largest shortcoming was that star could not be applied to a parenthesized expres-
sion, but only to a literal character, a character class, or dot. So, in gr ep, par enthe-
ses were useful only for capturing matched text, and not for general grouping. In
fact, some early versions of gr ep didn’t even allow nested parentheses.

Grep evolves

Although many systems have gr ep today, you’ll note that I’ve been using past
tense. The past tense refers to the flavor of the old versions, now upwards of 30
years old. Over time, as technology advances, older programs are sometimes
retr ofitted with additional features, and gr ep has been no exception.

Along the way, AT&T Bell Labs added some new features, such as incorporating
the \{min,max\} notation from the program lex. They also fixed the -y option,
which in early versions was supposed to allow case-insensitive matches but
worked only sporadically. Around the same time, people at Berkeley added start-
and end-of-word metacharacters and renamed -y to -i. Unfortunately, you still
couldn’t apply star or the other quantifiers to a parenthesized expression.

Eg rep evolves

By this time, Alfred Aho (also at AT&T Bell Labs) had written egr ep, which pro-
vided most of the richer set of metacharacters described in Chapter 1. More impor-
tantly, he implemented them in a completely differ ent (and generally better) way.
Not only were !+ " and !? " added, but they could be applied to parenthesized expres-
sions, greatly increasing egr ep expr essive power.

† Historical trivia: ed (and hence gr ep) used escaped parentheses rather than unadorned parentheses as
delimiters because Ken Thompson felt regular expressions would be used to work primarily with C
code, where needing to match raw parentheses would be more common than backrefer encing.

29 April 2003 09:19

Alter nation was added as well, and the line anchors were upgraded to “first-class”
status so that you could use them almost anywhere in your regex. However, egr ep
had problems as well—sometimes it would find a match but not display the result,
and it didn’t have some useful features that are now popular. Nevertheless, it was
a vastly more useful tool.

Other species evolve

At the same time, other programs such as awk, lex, and sed, were growing and
changing at their own pace. Often, developers who liked a feature from one pro-
gram tried to add it to another. Sometimes, the result wasn’t pretty. For example, if
support for plus was added to gr ep, + by itself couldn’t be used because gr ep had
a long history of a raw ‘+’ not being a metacharacter, and suddenly making it one
would have surprised users. Since ‘\+’ was probably not something a gr ep user
would have otherwise normally typed, it could safely be subsumed as the “one or
mor e” metacharacter.

Sometimes new bugs were intr oduced as features were added. Other times, added
featur es wer e later removed. There was little to no documentation for the many
subtle points that round out a tool’s flavor, so new tools either made up their own
style, or attempted to mimic “what seemed to work” with other tools.

Multiply that by the passage of time and numerous programmers, and the result is
general confusion (particularly when you try to deal with everything at once).†

POSIX— An attempt at standardization

POSIX, short for Portable Operating System Interface, is a wide-ranging standard
put forth in 1986 to ensure portability across operating systems. Several parts of
this standard deal with regular expressions and the traditional tools that use them,
so it’s of some interest to us. None of the flavors covered in this book, however,
strictly adhere to all the relevant parts. In an effort to reorganize the mess that reg-
ular expressions had become, POSIX distills the various common flavors into just
two classes of regex flavor, Basic Regular Expressions (BREs), and Extended Regu-
lar Expressions (EREs). POSIX pr ograms then support one flavor or the other. Table
3-1 on the next page summarizes the metacharacters in the two flavors.

One important feature of the POSIX standard is the notion of a locale, a collection
of settings that describe language and cultural conventions for such things as the
display of dates, times, and monetary values, the interpretation of characters in the
active encoding, and so on. Locales aim to allow programs to be internationalized.
They are not a regex-specific concept, although they can affect regular-expr ession
use. For example, when working with a locale that describes the Latin-1

† Such as when writing a book about regular expressions — ask me, I know!

A Casual Stroll Across the Regex Landscape 87

29 April 2003 09:19

88 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-1: Overview of POSIX Regex Flavors

Regex feature BREs EREs

dot, ˆ, $, [˙˙˙], [ˆ˙˙˙] 3 3

“any number” quantifier + +

+ and ? quantifiers + ?

range quantifier \{min,max\} {min,max}

gr ouping \(˙˙˙\) (˙˙˙)

can apply quantifiers to parentheses 3 3

backr efer ences \1 thr ough \9

alter nation 3

(ISO-8859-1) encoding, à and À (characters with ordinal values 224 and 160,
respectively) are consider ed “letters,” and any application of a regex that ignores
capitalization would know to treat them as identical.

Another example is !\w ", commonly provided as a shorthand for a “word-con-
stituent character” (ostensibly, the same as ![a-zA-Z0-9R]" in many flavors). This
featur e is not requir ed by POSIX, but it is allowed. If supported, !\w " would know
to allow all letters and digits defined in the locale, not just those in ASCII.

Note, however, that the need for this aspect of locales is mostly alleviated when
working with tools that support Unicode. Unicode is discussed further beginning
on page 106.

Henr y Spencer’s regex package

Also first appearing in 1986, and perhaps of more importance, was the release by
Henry Spencer of a regex package, written in C, which could be freely incorpo-
rated by others into their own programs — a first at the time. Every program that
used Henry’s package — and there wer e many — pr ovided the same consistent
regex flavor unless the program’s author went to the explicit trouble to change it.

Perl evolves

At about the same time, Larry Wall started developing a tool that would later
become the language Perl. He had already greatly enhanced distributed software
development with his patch pr ogram, but Perl was destined to have a truly monu-
mental impact.

Larry released Perl Version 1 in December 1987. Perl was an immediate hit
because it blended so many useful features of other languages, and combined
them with the explicit goal of being, in a day-to-day practical sense, useful.

29 April 2003 09:19

One immediately notable feature was a set of regular expression operators in the
tradition of the specialty tools sed and awk — a first for a general scripting lan-
guage. For the regular expression engine, Larry borrowed code from an earlier
pr oject, his news reader rn (which based its regular expression code on that in
James Gosling’s Emacs).† The regex flavor was considered powerful by the day’s
standards, but was not nearly as full-featured as it is today. Its major drawbacks
wer e that it supported at most nine sets of parentheses, and at most nine alterna-
tives with !;", and worst of all, !;" was not allowed within parentheses. It did not
support case-insensitive matching, nor allow !\w " within a class (it didn’t support
!\s " or !\d " anywher e). It didn’t support the !{min,max}" range quantifier.

Perl 2 was released in June 1988. Larry had replaced the regex code entirely, this
time using a greatly enhanced version of the Henry Spencer package mentioned in
the previous section. You could still have at most nine sets of parentheses, but
now you could use !;" inside them. Support for !\d " and !\s " was added, and support
for !\w " was changed to include an underscore, since then it would match what
characters were allowed in a Perl variable name. Furthermor e, these metachar-
acters were now allowed inside classes. (Their opposites, !\D ", !\W ", and !\S ", wer e
also newly supported, but wer en’t allowed within a class, and in any case some-
times didn’t work correctly.) Importantly, the /i modifier was added, so you could
now do case-insensitive matching.

Perl 3 came out more than a year later, in October 1989. It added the /e modifier,
which greatly increased the power of the replacement operator, and fixed some
backr efer ence-r elated bugs from the previous version. It added the !{min,max}" range
quantifiers, although unfortunately, they didn’t always work quite right. Worse still,
with Version 3, the regular expression engine couldn’t always work with 8-bit data,
yielding unpredictable results with non-ASCII input.

Perl 4 was released a year and a half later, in March 1991, and over the next two
years, it was improved until its last update in February 1993. By this time, the bugs
wer e fixed and restrictions expanded (you could use !\D " and such within character
classes, and a regular expression could have virtually unlimited sets of parenthe-
ses). Work also went into optimizing how the regex engine went about its task,
but the real breakthr ough wouldn’t happen until 1994.

Perl 5 was officially released in October 1994. Overall, Perl had undergone a mas-
sive overhaul, and the result was a vastly superior language in every respect. On
the regular-expr ession side, it had more inter nal optimizations, and a few meta-
characters were added (including !\G ", which increased the power of iterative

† James Gosling would later go on to develop his own language, Java, which somewhat ironically does
not natively support regular expressions. Java 1.4 however, does include a wonderful regular expres-
sion package, covered in depth in Chapter 8.

A Casual Stroll Across the Regex Landscape 89

29 April 2003 09:19

90 Chapter 3: Over view of Regular Expression Features and Flavors

matches + 128), non-capturing parentheses (+ 45), lazy quantifiers (+ 140), look-
ahead (+ 60), and the /x modifier† (+ 72).

Mor e important than just for their raw functionality, these “outside the box” modi-
fications made it clear that regular expressions could really be a powerful pro-
gramming language unto themselves, and were still ripe for further development.

The newly-added non-capturing parentheses and lookahead constructs requir ed a
way to be expressed. None of the grouping pairs — (˙˙˙), [˙˙˙], <˙˙˙>, or
{˙˙˙} — wer e available to be used for these new features, so Larry came up with
the various ‘(?’ notations we use today. He chose this unsightly sequence because
it previously would have been an illegal combination in a Perl regex, so he was
fr ee to give it meaning. One important consideration Larry had the foresight to rec-
ognize was that there would likely be additional functionality in the future, so by
restricting what was allowed after the ‘(?’ sequences, he was able to reserve them
for future enhancements.

Subsequent versions of Perl grew more robust, with fewer bugs, more inter nal
optimizations, and new features. I like to believe that the first edition of this book
played some small part in this, for as I researched and tested regex-r elated fea-
tur es, I would send my results to Larry and the Perl Porters group, which helped
give some direction as to where impr ovements might be made.

New regex features added over the years include limited lookbehind (+ 60),
“atomic” grouping (+ 137), and Unicode support. Regular expressions were
br ought to the next level by the addition of conditional constructs (+ 138), allow-
ing you to make if-then-else decisions right there as part of the regular expression.
And if that wasn’t enough, there are now constructs that allow you to intermingle
Perl code within a regular expression, which takes things full circle (+ 327). The
version of Perl covered in this book is 5.8.

A par tial consolidation of flavors

The advances seen in Perl 5 were per fectly timed for the World Wide Web revolu-
tion. Perl was built for text processing, and the building of web pages is just that,
so Perl quickly became the language for web development. Perl became vastly
mor e popular, and with it, its powerful regular expression flavor did as well.

Developers of other languages were not blind to this power, and eventually regu-
lar expression packages that were “Perl compatible” to one extent or another were
cr eated. Among these were packages for Tcl, Python, Microsoft’s .NET suite of lan-
guages, Ruby, PHP, C/C++, and many packages for Java.

† My claim to fame is that Larry added the /x modifier after seeing a note from me discussing a long
and complex regex. In the note, I had “pretty printed” the regular expression for clarity. Upon seeing
it, he thought that it would be convenient to do so in Perl code as well, so he added /x.

29 April 2003 09:19

Versions as of this book

Table 3-2 shows a few of the version numbers for programs and libraries that I
talk about in the book. Older versions may well have fewer features and more
bugs, while newer versions may have additional features and bug fixes (and new
bugs of their own).

Because Java did not originally come with regex support, numerous regex libraries
have been developed over the years, so anyone wishing to use regular expres-
sions in Java needed to find them, evaluate them, and ultimately select one to use.
Chapter 6 looks at seven such packages, and ways to evaluate them. For reasons
discussed there, the regex package that Sun eventually came up with (their
java.util.regex, now standard as of Java 1.4) is what I use for most of the Java
examples in this book.

Table 3-2: Versions of Some Tools Mentioned in This Book

GNU awk 3.1 MySQL 3.23.49 Pr ocmail 3.22

GNU egr ep/gr ep 2.4.2 .NET Framework 2002 (1.0.3705) Python 2.2.1

GNU Emacs 21.2.1 PCRE 3.8 Ruby 1.6.7

flex 2.5.4 Perl 5.8 GNU sed 3.02

java.util.regex (Java 1.4.0) PHP (preg routines) 4.0.6 Tcl 8.4

At a Glance
A chart showing just a few aspects of some common tools gives a good clue to
how differ ent things still are. Table 3-3 provides a very superficial look at a few
aspects of the regex flavors of a few tools.

Table 3-3: A (Very) Superficial Look at the Flavor of a Few Common Tools

Moder n Moder n GNU Sun’s JavaFeature gr ep egr ep Emacs Tcl Perl .NET packa ge

+, ˆ, $, [˙˙˙] 3 3 3 3 3 3 3

? + ; \? \+ \; ? + ; ? + \; ? + ; ? + ; ? + ; ? + ;

gr ouping \(˙˙˙\) (˙˙˙) \(˙˙˙\) (˙˙˙) (˙˙˙) (˙˙˙) (˙˙˙)

(?:˙˙˙) 3 3 3

word boundary \< \> \< \> \b,\B \m, \M, \y \b,\B \b,\B \b,\B

\w, \W 3 3 3 3 3 3

backr efer ences 3 3 3 3 3 3

3 supported

A Casual Stroll Across the Regex Landscape 91

29 April 2003 09:19

92 Chapter 3: Over view of Regular Expression Features and Flavors

A chart like Table 3-3 is often found in other books to show the differ ences among
tools. But, this chart is only the tip of the iceberg — for every feature shown, there
ar e a dozen important issues that are overlooked.

For emost is that programs change over time. For example, Tcl used to not support
backr efer ences and word boundaries, but now does. It first supported word
boundaries with the ungainly-looking ![:<:] " and ![:>:] ", and still does, although
such use is deprecated in favor of its more-r ecently supported !\m ", !\M ", and !\y "

(start of word boundary, end of word boundary, or either).

Along the same lines, programs such as gr ep and egr ep, which aren’t from a single
pr ovider but rather can be provided by anyone who wants to create them, can
have whatever flavor the individual author of the program wishes. Human nature
being what is, each tends to have its own features and peculiarities. (The GNU ver-
sions of many common tools, for example, are often more power ful and robust
than other versions.)

And perhaps as important as the easily visible features are the many subtle (and
some not-so-subtle) differ ences among flavors. Looking at the table, one might
think that regular expressions are exactly the same in Perl, .NET, and Java, which
is certainly not true. Just a few of the questions one might ask when looking at
something like Table 3-3 are:

• Ar e star and friends allowed to quantify something wrapped in parentheses?

• Does dot match a newline? Do negated character classes match it? Do either
match the null character?

• Ar e the line anchors really line anchors (i.e., do they recognize newlines that
might be embedded within the target string)? Are they first-class metachar-
acters, or are they valid only in certain parts of the regex?

• Ar e escapes recognized in character classes? What else is or isn’t allowed
within character classes?

• Ar e par entheses allowed to be nested? If so, how deeply (and how many
par entheses ar e even allowed in the first place)?

• If backrefer ences ar e allowed, when a case-insensitive match is requested, do
backr efer ences match appropriately? Do backrefer ences “behave” reasonably
in fringe situations?

• Ar e octal escapes such as !\123 " allowed? If so, how do they reconcile the syn-
tactic conflict with backrefer ences? What about hexadecimal escapes? Is it
really the regex engine that supports octal and hexadecimal escapes, or is it
some other part of the utility?

29 April 2003 09:19

• Does !\w " match only alphanumerics, or additional characters as well? (Among
the programs shown supporting \w in Table 3-3, there are several differ ent
interpr etations). Does !\w " agr ee with the various word-boundary metachar-
acters on what does and doesn’t constitute a “word character”? Do they
respect the locale, or understand Unicode?

Many issues must be kept in mind, even with a tidy little summary like Table 3-3
as a superficial guide. (As another example, peek ahead to Table 8-1 on
page 373 for a look at a chart showing some differ ences among Java packages.) If
you realize that there’s a lot of dirty laundry behind that nice façade, it’s not too
dif ficult to keep your wits about you and deal with it.

As mentioned at the start of the chapter, much of this is just superficial syntax, but
many issues go deeper. For example, once you understand that something such as
!(Jul;July) " in egr ep needs to be written as !\(Jul\;July\) " for GNU Emacs, you
might think that everything is the same from there, but that’s not always the case.
The differ ences in the semantics of how a match is attempted (or, at least, how it
appears to be attempted) is an extremely important issue that is often overlooked,
yet it explains why these two apparently identical examples would actually end up
matching differ ently: one always matches ‘Jul’, even when applied to ‘July’.
Those very same semantics also explain why the opposite, !(July;Jul) " and
!\(July\;Jul\) ", do match the same text. Again, the entire next chapter is devoted
to understanding this.

Of course, what a tool can do with a regular expression is often more important
than the flavor of its regular expressions. For example, even if Perl’s expressions
wer e less powerful than egr ep ’s, Perl’s flexible use of regexes provides for more
raw usefulness. We’ll look at a lot of individual features in this chapter, and in
depth at a few languages in later chapters.

Care and Handling of
Regular Expressions
The second concern outlined at the start of the chapter is the syntactic packaging
that tells an application “Hey, here’s a regex, and this is what I want you to do
with it.” egr ep is a simple example because the regular expression is expected as
an argument on the command line. Any extra syntactic sugar, such as the single
quotes I used throughout the first chapter, are needed only to satisfy the command
shell, not egr ep. Complex systems, such as regular expressions in programming
languages, requir e mor e complex packaging to inform the system exactly what the
regex is and how it should be used.

The next step, then, is to look at what you can do with the results of a match.
Again, egr ep is simple in that it pretty much always does the same thing (displays

Care and Handling of Regular Expressions 93

29 April 2003 09:19

94 Chapter 3: Over view of Regular Expression Features and Flavors

lines that contain a match), but as the previous chapter began to show, the real
power is in doing much more inter esting things. The two basic actions behind
those interesting things are match (to check if a regex matches in a string, and to
perhaps pluck information from the string), and sear ch-and-replace, to modify a
string based upon a match. There are many variations of these actions, and many
variations on how individual languages let you perfor m them.

In general, a programming language can take one of three approaches to regular
expr essions: integrated, procedural, and object-oriented. With the first, regular
expr ession operators are built directly into the language, as with Perl. In the other
two, regular expressions are not part of the low-level syntax of the language.
Rather, nor mal strings are passed as arguments to normal functions, which then
interpr et the strings as regular expressions. Depending on the function, one or
mor e regex-r elated actions are then perfor med. One derivative or another of this
style is use by most (non-Perl) languages, including Java, the .NET languages, Tcl,
Python, PHP, Emacs lisp, and Ruby.

Integ rated Handling
We’ve already seen a bit of Perl’s integrated approach, such as this example from
page 55:

if ($line =˜ m/ˆSubject: (.+)/i) {
$subject = $1;

}

Her e, for clarity, variable names I’ve chosen are in italic, while the regex-r elated
items are bold, and the regular expression itself is underlined. We know that Perl
applies the regular expression !ˆSubject: (.+)" to the text held in $line, and if a
match is found, executes the block of code that follows. In that block, the variable
$1 repr esents the text matched within the regular expression’s parentheses, and
this gets assigned to the variable $subject.

Another example of an integrated approach is when regular expressions are part
of a configuration file, such as for pr ocmail (a Unix mail-processing utility.) In the
configuration file, regular expressions are used to route mail messages to the sec-
tions that actually process them. It’s even simpler than with Perl, since the
operands (the mail messages) are implicit.

What goes on behind the scenes is quite a bit more complex than these examples
show. An integrated approach simplifies things to the programmer because it hides
in the background some of the mechanics of preparing the regular expression, set-
ting up the match, applying the regular expression, and deriving results from that
application. Hiding these steps makes the normal case very easy to work with, but
as we’ll see later, it can make some cases less efficient or clumsier to work with.

29 April 2003 09:19

But, before getting into those details, let’s uncover the hidden steps by looking at
the other methods.

Procedural and Object-Oriented Handling
Pr ocedural and object-oriented handling are fairly similar. In either case, regex
functionality is provided not by built-in regular-expr ession operators, but by nor-
mal functions (procedural) or constructors and methods (object-oriented). In this
case, there are no true regular-expr ession operands, but rather normal string argu-
ments that the functions, constructors, or methods choose to interpret as regular
expr essions.

The next sections show examples in Java, VB.NET, and Python.

Regex handling in Java

Let’s look at the equivalent of the “Subject” example in Java, using Sun’s
java.util.regex package. (Java is covered in depth in Chapter 8.)

import java.util.regex.,; // Make regex classes easily available

+
+
+

Ê Pattern r = Pattern.compile("ˆSubject: (.+)", Pattern.CASEQINSENSITIVE);
Ë Matcher m = r.matcher(line);
Ì if (m.find()) {
Í subject = m.group(1);

}

Variable names I’ve chosen are again in italic, the regex-r elated items are bold, and
the regular expression itself is underlined. Well, to be precise, what’s underlined is
a nor mal string literal to be interpreted as a regular expression.

This example shows an object-oriented approach with regex functionality supplied
by two classes in Sun’s java.util.regex package: Pattern and Matcher. The
actions perfor med ar e:

Ê Inspect the regular expression and compile it into an internal form that
matches in a case-insensitive manner, yielding a “Pattern” object.

Ë Associate it with some text to be inspected, yielding a “Matcher” object.

Ì Actually apply the regex to see if there is a match in the previously-associ-
ated text, and let us know the result.

Í If there is a match, make available the text matched within the first set of
capturing parentheses.

Actions similar to these are requir ed, explicitly or implicitly, by any program wish-
ing to use regular expressions. Perl hides most of these details, and this Java
implementation usually exposes them.

Care and Handling of Regular Expressions 95

29 April 2003 09:19

96 Chapter 3: Over view of Regular Expression Features and Flavors

A procedural example. Sun’s Java regex package does, however, provide a few
pr ocedural-appr oach “convenience functions” that hide much of the work. Rather
than requir e you to first create a regex object, then use that object’s methods to
apply it, these static functions create a temporary object for you, throwing it away
once done. Here’s an example showing the Pattern.matches(˙˙˙) function:

if (! Pattern.matches("\\s+", line))
{

// . . . line is not blank . . .
}

This function wraps an implicit !ˆ˙˙˙$ " ar ound the regex, and retur ns a Boolean indi-
cating whether it can match the input string. It’s common for a package to provide
both procedural and object-oriented interfaces, just as Sun did here. The differ-
ences between them often involve convenience (a procedural interface can be eas-
ier to work with for simple tasks, but more cumbersome for complex tasks),
functionality (procedural interfaces generally have less functionality and options
than their object-oriented counterparts), and efficiency (in any given situation, one
is likely to be more efficient than the other — a subject covered in detail in
Chapter 6).

Ther e ar e many regex packages for Java (half a dozen are discussed in Chapter 8),
but Sun is in a position to integrate theirs with the language more than anyone
else. For example, they’ve integrated it with the string class; the previous example
can actually be written as:

if (! line.matches("\\s+",))
{

// . . . line is not blank . . .
}

Again, this is not as efficient as a properly-applied object-oriented approach, and
so is not appropriate for use in a time-critical loop, but it’s quite convenient for
“casual” use.

Regex handling in VB and other .NET languages

Although all regex engines perfor m essentially the same basic tasks, they differ in
how those tasks and services are exposed to the programmer, even among imple-
mentations sharing the same approach. Here’s the “Subject” example in VB.NET
(.NET is covered in detail in Chapter 9):

Imports System.Text.RegularExpressions ’ Make regex classes easily available

+
+
+

Dim R as Regex = New Regex("ˆSubject: (.+)", RegexOptions.IgnoreCase)
Dim M as Match = R.Match(line)
If M.Success

subject = M.Groups(1).Value
End If

29 April 2003 09:19

Overall, this is generally similar to the Java example, except that .NET combines
steps Ë and Ì , and requir es an extra Value in Í . Why the differ ences? One is
not inherently better or worse — each was just chosen by the developers who
thought it was the best approach at the time. (More on this in a bit.)

.NET also provides a few procedural-appr oach functions. Here’s one to check for a
blank line:

If Not Regex.IsMatch(Line, "ˆ\s+$") Then
’ . . . line is not blank . . .

End If

Unlike Sun’s Pattern.matches function, which adds an implicit !ˆ˙˙˙$ " ar ound the
regex, Microsoft chose to offer this more general function. It’s just a simple wrap-
per around the core objects, but it involves less typing and variable corralling for
the programmer, at only a small efficiency expense.

Regex handling in Python

As a final example, let’s look at the !Subject " example in Python:

import re;
+
+
+

R = re.compile("ˆSubject: (.+)", re.IGNORECASE);
M = R.search(line)
if M:

subject = M.group(1)

Again, this looks very similar to what we’ve seen before.

Why do approaches differ?

Why does one language do it one way, and another language another? There may
be language-specific reasons, but it mostly depends on the whim and skills of the
engineers that develop each package. In fact, there are many unrelated regular-
expr ession packages for Java (see Chapter 8), each written by someone who
wanted the functionality that Sun didn’t originally provide. Each has its own
str engths and weaknesses, but it’s interesting to note that they all provide their
functionality in quite differ ent ways from each other, and from what Sun eventu-
ally decided to implement themselves.

A Sear ch-and-Replace Example
The “Subject” example is pretty simple, so the various approaches really don’t
have an opportunity to show how differ ent they really are. In this section, we’ll
look at a somewhat more complex example, further highlighting the differ ent
designs.

Care and Handling of Regular Expressions 97

29 April 2003 09:19

98 Chapter 3: Over view of Regular Expression Features and Flavors

In the previous chapter (+ 73), we saw this Perl search-and-r eplace to “linkize” an
email address:

$text =˜ s{
\b
Captur e the address to $1 . . .
(

\w[-.\w]+ # user name
@
[-\w]+(\.[-\w]+)+\.(com;edu;info) # hostname

)
\b

}{$1}gix;

Let’s see how this is done in other languages.

Sear ch-and-replace in Java

Her e’s the search-and-r eplace example with Sun’s java.util.regex package:

import java.util.regex.,; // Make regex classes easily available

+
+
+

Pattern r = Pattern.compile(
"\\b \n"+
"# Captur e the address to $1 . . . \n"+
"(\n"+
" \\w[-.\\w]+ # user name \n"+
" @ \n"+
" [-\\w]+(\\.[-\\w]+)+\\.(com;edu;info) # hostname \n"+
") \n"+
"\\b \n",
Pattern.CASEQINSENSITIVE<Pattern.COMMENTS);

Matcher m = r.matcher(text);
String result = m.replaceAll("$(1)");
System.out.println(result);

Ther e ar e a number of things to note. Perhaps the most important is that each ‘\’
wanted in the regular expression requir es ‘\\’ in the string literal. Thus, using ‘\\w’
in the string literal results in ‘\w’ in the regular expression. This is because regular
expr essions ar e pr ovided as normal Java string literals, which as we’ve seen before
(+ 44), requir e special handling. For debugging, it might be useful to use

System.out.println(P.pattern());

to display the regular expression as the regex function actually received it. One
reason that I include newlines in the regex is so that it displays nicely when
printed this way. Another reason is that each ‘#’ intr oduces a comment that goes
until the next newline; so, at least some of the newlines are requir ed to restrain
the comments.

Perl uses notations like /g, /i, and /x to signify special conditions (these are the
modifiers for replace all, case-insensitivity, and fr ee for matting modes + 133), but

29 April 2003 09:19

java.util.regex uses either differ ent functions (replaceAll vs. replace) or
flag arguments passed to the function (e.g., Pattern.CASERINSENSITIVE and
Pattern.COMMENTS).

Sear ch-and-replace in VB.NET

The general approach in VB.NET is similar:

Dim R As Regex = New Regex R
("\b " & R
"(?# Captur e the address to $1 . . .) " & R
"(" & R
" \w[-.\w]+ (?# user name) " & R
" @ " & R
" [-\w]+(\.[-\w]+)+\.(com;edu;info) (?# hostname) " & R
") " & R
"\b ", R
RegexOptions.IgnoreCase Or RegexOptions.IgnorePatternWhitespace)

Dim Copy As String = R.Replace(text, "${1}")
Console.WriteLine(Copy)

Due to the inflexibility of VB.NET string literals (they can’t span lines, and it’s diffi-
cult to get newline characters into them), longer regular expressions are not as
convenient to work with as in some other languages. On the other hand, because
‘\’ is not a string metacharacter in VB.NET, the expression can be less visually clut-
ter ed. A double quote is a metacharacter in VB.NET string literals: to get one dou-
ble quote into the string’s value, you need two double quotes in the string literal.

Sear ch and Replace in Other Languages
Let’s quickly look at a few examples from other traditional tools and languages.

Awk

Awk uses an integrated approach, /rege x/, to per form a match on the current
input line, and uses “var ˜ ˙˙˙” to per form a match on other data. You can see
wher e Perl got its notation for matching. (Perl’s substitution operator, however, is
modeled after sed’s.) The early versions of awk didn’t support a regex substitution,
but modern versions have the sub(˙˙˙) operator:

sub(/mizpel/, "misspell")

This applies the regex !mizpel " to the current line, replacing the first match with
misspell. Note how this compares to Perl’s (and sed’s) s/mizpel/misspell/.

To replace all matches within the line, awk does not use any kind of /g modifier,
but a differ ent operator altogether: gsub(/mizpel/, "misspell").

Care and Handling of Regular Expressions 99

29 April 2003 09:19

100 Chapter 3: Over view of Regular Expression Features and Flavors

Tc l

Tcl takes a procedural approach that might look confusing if you’re not familiar
with Tcl’s quoting conventions. To corr ect our misspellings with Tcl, we might use:

regsub mizpel $var misspell newvar

This checks the string in the variable var, and replaces the first match of !mizpel "

with misspell, putting the now possibly-changed version of the original string
into the variable newvar (which is not written with a dollar sign in this case). Tcl
expects the regular expression first, the target string to look at second, the replace-
ment string third, and the name of the target variable fourth. Tcl also allows
optional flags to its regsub, such as -all to replace all occurrences of the match
instead of just the first:

regsub -all mizpel $var misspell newvar

Also, the -nocase option causes the regex engine to ignore the differ ence
between uppercase and lowercase characters (just like egr ep ’s -i flag, or Perl’s /i
modifier).

GNU Emacs

The powerful text editor GNU Emacs (just “Emacs” from here on) supports elisp
(Emacs lisp) as a built-in programming language. It provides a procedural regex
inter face with numerous functions providing various services. One of the main
ones is re-search-forward, which accepts a normal string as an argument and
interpr ets it as a regular expression. It then starts searching the text from the “cur-
rent position,” stopping at the first match, or aborting if no match is found. (This
function is invoked when one invokes a “regexp search” while using the editor.)

As Table 3-3 (+ 91) shows, Emacs’ flavor of regular expressions is heavily laden
with backslashes. For example, !\<\([a-z]+\)\([\n \t]\;<[ˆ>]+>\)+\1\> " is
an expression for finding doubled words, similar to the problem in the first chap-
ter. We couldn’t use this regex directly, however, because the Emacs regex engine
doesn’t understand \t and \n. Emacs double-quoted strings, however, do, and
convert them to the tab and newline values we desire befor e the regex engine
ever sees them. This is a notable benefit of using normal strings to provide regular
expr essions. One drawback, particularly with elisp’s regex flavor’s propensity for
backslashes, is that regular expressions can end up looking like a row of scattered
toothpicks. Here’s a small function for finding the next doubled word:

(defun FindNextDbl ()
"move to next doubled word, ignoring <˙˙˙> tags" (interactive)
(re-search-forward "\\<\\([a-z]+\\)\\([\n \t]\\;<[ˆ>]+>\\)+\\1\\>")

)

Combine that with (define-key global-map "\C-x\C-d" ’FindNextDbl) and you
can use the “Control-x Contr ol-d” sequence to quickly search for doubled words.

29 April 2003 09:19

Care and Handling: Summary
As you can see, there’s a wide range of functionalities and mechanics for achiev-
ing them. If you are new to these languages, it might be quite confusing at this
point. But, never fear! When trying to learn any one particular tool, it is a simple
matter to learn its mechanisms.

Str ings, Character Encodings, and Modes
Befor e getting into the various type of metacharacters generally available, there are
a number of global issues to understand: regular expressions as strings, character
encodings, and match modes.

These are simple concepts, in theory, and in practice, some indeed are. With most,
though, the small details, subtleties, and inconsistencies among the various imple-
mentations sometimes makes it hard to pin down exactly how they work in prac-
tice. The next sections cover some of the common and sometimes complex issues
you’ll face.

Str ings as Regular Expressions
The concept is simple: in most languages except Perl, awk, and sed, the regex
engine accepts regular expressions as normal strings — strings that are often pro-
vided as string literals like "ˆFrom:(.+)". What confuses many, especially early
on, is the need to deal with the language’s own string-literal metacharacters when
composing a string to be used as a regular expression.

Each language’s string literals have their own set of metacharacters, and some lan-
guages even have more than one type of string literal, so there’s no one rule that
works everywhere, but the concepts are all the same. Many languages’ string liter-
als recognize escape sequences like \t, \\, and \x2A, which are interpr eted while
the string’s value is being composed. The most common regex-r elated aspect of
this is that each backslash in a regex requir es two backslashes in the correspond-
ing string literal. For example, "\\n" is requir ed to get the regex !\n ".

If you forgot the extra backslash for the string literal and used "\n", with many
languages you’d then get ! 1 ", which just happens to do exactly the same thing as
!\n ". Well, actually, if the regex is in an /x type of free-spacing mode, ! 1 " becomes
empty, while !\n " remains a regex to match a newline. So, you can get bitten if you
forget. Table 3-4 on the next page shows a few examples involving \t and \x2A

(2A is the ASCII code for ‘+’.) The second pair of examples in the table show the
unintended results when the string-literal metacharacters aren’t taken into account.

Every language’s string literals are dif ferent, but some are quite differ ent in that ‘\’
is not a metacharacter. For example. VB.NET’s string literals have only one

Str ings, Character Encodings, and Modes 101

29 April 2003 09:19

102 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-4: A Few String-Literal Examples

Str ing literal "[\t\x2A]" "[\\t\\x2A]" "\t\x2A" "\\t\\x2A"

Str ing value ‘[2+]’ ‘[\t\x2A]’ ‘2+’ ‘\t\x2A’

As regex ![2+]" ![\t\x2A] " ! 2+ " !\t\x2A "

Matches any number tabs tab followed by startab or star tab or star

tab followed by starIn /x mode tab or star tab or star err or

metacharacter, a double quote. The next sections look at the details of several
common languages’ string literals. Whatever the individual string-literal rules, the
question on your mind when using them should be “what will the regular expres-
sion engine see after the language’s string processing is done?”

Str ings in Java

Java string literals are like those presented in the introduction, in that they are
delimited by double quotes, and backslash is a metacharacter. Common combina-
tions such as ‘\t’ (tab), ‘\n’ (newline), ‘\\’ (literal backslash), etc. are supported.
Using a backslash in a sequence not explicitly supported by literal strings results in
an error.

Str ings in VB.NET

String literals in VB.NET are also delimited by double quotes, but otherwise are
quite differ ent fr om Java’s. VB.NET strings recognize only one metasequence: a
pair of double quotes in the string literal add one double quote into the string’s
value. For example, "he said ""hi""\." results in !he said "hi"\. "

Str ings in C#

Although all the languages of Microsoft’s .NET Framework share the same regular
expr ession engine internally, each has its own rules about the strings used to cre-
ate the regular-expr ession arguments. We just saw Visual Basic’s simple string liter-
als. In contrast, Microsoft’s C# language has two types of string literals.

C# supports the common double-quoted string similar to the kind discussed in this
section’s introduction, except that "" rather than \" adds a double quote into the
string’s value. However, C# also supports “verbatim strings,” which look like @"˙˙˙".
Verbatim strings recognize no backslash sequences, but instead, just one special
sequence: a pair of double quotes inserts one double quote into the target value.
This means that you can use "\\t\\x2A" or @"\t\x2A" to create the !\t\x2A "

example. Because of this simpler interface, one would tend to use these @"˙˙˙" ver-
batim strings for most regular expressions.

29 April 2003 09:19

Str ings in PHP

PHP also offers two types of strings, yet both differ from either of C#’s types. With
PHP’s double-quoted strings, you get the common backslash sequences like ‘\n’,
but you also get variable interpolation as we’ve seen with Perl (+ 77), and also the
special sequence {˙˙˙} which inserts into the string the result of executing the code
between the braces.

These extra features of PHP double-quoted strings mean that you’ll tend to insert
extra backslashes into regular expressions, but there’s one additional feature that
helps mitigate that need. With Java and C# string literals, a backslash sequence
that isn’t explicitly recognized as special within strings results in an error, but with
PHP double-quoted strings, such sequences are simply passed through to the
string’s value. PHP strings recognize \t, so you still need "\\t" to get !\t ", but if
you use "\w", you’ll get !\w " because \w is not among the sequences that PHP dou-
ble-quoted strings recognize. This extra feature, while handy at times, does add
yet another level of complexity to PHP double-quoted strings, so PHP also offers its
simpler single-quoted strings.

PHP single-quoted strings offer uncluttered strings on the order of VB.NET’s
strings, or C#’s @"˙˙˙" strings, but in a slightly differ ent way. Within a PHP single-
quoted string, the sequence \’ includes one single quote in the target value, and a
\\ at the end of the string allows the target value to end with a backslash. Any
other character (including any other backslash) is not considered special, and is
copied to the target value verbatim. This means that ’\t\x2A’ cr eates !\t\x2A ".
Because of this simplicity, single-quoted strings are the most convenient for PHP

regular expressions.

Str ings in Python

Python offers a number of string-literal types. You can use either single quotes or
double quotes to create strings, but unlike PHP, ther e is no differ ence between the
two. Python also offers “triple-quoted” strings of the form ’’’˙˙˙’’’ and """˙˙˙""",
which are dif ferent in that they may contain unescaped newlines. All four types
of fer the common backslash sequences such as \n, but have the same twist that
PHP has in that unrecognized sequences are left in the string verbatim. Contrast
this with Java and C# strings, for which unrecognized sequences cause an error.

Like PHP and C#, Python offers a more literal type of string, its “raw string.” Similar
to C#’s @"˙˙˙" notation, Python uses an ‘r’ befor e the opening quote of any of the
four quote types. For example, r"\t\x2A" yields !\t\x2A ". Unlike the other lan-
guages, though, with Python’s raw strings, all backslashes are kept in the string,
including those that escape a double quote (so that the double quote can be
included within the string): r"he said \"hi\"\." results in !he said \"hi\"\. ".
This isn’t really a problem when using strings for regular expressions, since

Str ings, Character Encodings, and Modes 103

29 April 2003 09:19

104 Chapter 3: Over view of Regular Expression Features and Flavors

Python’s regex flavor treats !\"" as !"", but if you like, you can bypass the issue by
using one of the other types of raw quoting: r’he said "hi"\.’

Str ings in Tcl

Tcl is dif ferent from anything else in that it doesn’t really have string literals at all.
Rather, command lines are broken into “words,” which Tcl commands can then
consider as strings, variable names, regular expressions, or anything else as appro-
priate to the command. While a line is being parsed into words, common back-
slash sequences like \n ar e recognized and converted, and backslashes in
unknown combinations are simply dropped. You can put double quotes around
the word if you like, but they aren’t requir ed unless the word has whitespace in it.

Tcl also has a raw literal type of quoting similar to Python’s raw strings, but Tcl
uses braces, {˙˙˙}, instead of r’˙˙˙’. Within the braces, everything except a back-
slash-newline combination is kept as-is, so you can use {\t\x2A} to get !\t\x2A ".

Within the braces, you can have additional sets of braces so long as they nest.
Those that don’t nest must be escaped with a backslash, although the backslash
does remain in the string’s value.

Regex literals in Perl

In the Perl examples we’ve seen so far in this book, regular expressions have been
pr ovided as literals (“regular-expr ession literals”). As it turns out, you can also pro-
vide them as strings. For example:

$str =˜ m/(\w+)/;

can also be written as:

$regex = ’(\w+)’;
$str =˜ $regex;

or perhaps:

$regex = "(\\w+)";
$str =˜ $regex;

(although using a regex literal can be much more efficient + 242, 348).

When a regex is provided as a literal, Perl provides extra features that the regular-
expr ession engine itself does not, including:

• The interpolation of variables (incorporating the contents of a variable as part
of the regular expression).

• Support for a literal-text mode via !\Q˙˙˙\E " (+ 112).

• Optional support for a \N{name} construct, which allows you to specify char-
acters via their official Unicode names. For example, you can match ‘¡Hola!’
with !\N{INVERTED EXCLAMATION MARK}Hola! ".

29 April 2003 09:19

In Perl, a regex literal is parsed like a very special kind of string. In fact, these fea-
tur es ar e also available with Perl double-quoted strings. The point to be aware of
is that these features are not pr ovided by the regular-expr ession engine. Since the
vast majority of regular expressions used within Perl are as regex literals, most
think that !\Q˙˙˙\E " is part of Perl’s regex language, but if you ever use regular
expr essions read from a configuration file (or from the command line, etc.), it’s
important to know exactly what features are provided by which aspect of the lan-
guage.

Mor e details are available in Chapter 7, starting on page 288.

Character-Encoding Issues
A character encoding is merely an explicit agreement on how bytes with various
values should be interpreted. A byte with the decimal value 110 is interpreted as
the character ‘n’ with the ASCII encoding, but as ‘>’ with EBCDIC. Why? Because
that’s what someone decided — ther e’s nothing intrinsic about those values and
characters that makes one encoding better than the other. The byte is the same;
only the interpretation changes.

ASCII defines characters for only half the values that a byte can hold. The encoding
ISO-8859-1 (commonly called Latin-1) fills in the blank spots with accented char-
acters and special symbols, making an encoding usable by a larger set of lan-
guages. With this encoding, a byte with a decimal value of 234 is to be interpreted
as ê, instead of being undefined as it is with ASCII.

The important question for us is this: when we intend for a certain set of bytes to
be consider ed in the light of a particular encoding, does the program actually treat
them that way? For example, if we have four bytes with the values 234, 116, 101,
and 115 that we intend to be considered as Latin-1 (repr esenting the French word
“êtes”), we’d like the regex !ˆ\w+$ " or !ˆ\b " to match. This happens if the program’s
\w and \b know to treat those bytes as Latin-1 characters, and probably doesn’t
happen otherwise.

Richness of encoding-related support

Ther e ar e many encodings. When you’re concer ned with a particular one, impor-
tant questions you should ask include:

• Does the program understand this encoding?

• How does it know to treat this data as being of that encoding?

• How rich is the regex support for this encoding?

Str ings, Character Encodings, and Modes 105

29 April 2003 09:19

106 Chapter 3: Over view of Regular Expression Features and Flavors

The richness of an encoding’s support has several important issues, including:

• Ar e characters that are encoded with multiple bytes recognized as such? Do
expr essions like dot and [ˆx] match single characters, or single bytes ?

• Do \w, \d, \s, \b, etc., properly understand all the characters in the encoding?
For example, even if ê is known to be a letter, do \w and \b tr eat it as such?

• Does the program try to extend the interpretation of class ranges? Is ê

matched by [a-z]?

• Does case-insensitive matching work properly with all the characters? For
example, are ê and Ê equal?

Sometimes things are not as simple as they might seem. For example, the \b of
Sun’s java.util.regex package properly understands all the word-related char-
acters of Unicode, but its \w does not (it understands only basic ASCII). We’ll see
mor e examples of this later in the chapter.

Unicode

Ther e seems to be a lot of misunderstanding about just what “Unicode” is. At the
most basic level, Unicode is a character set or a conceptual encoding — a logical
mapping between a number and a character. For example, the Korean character
k is mapped to the number 49,333. The number, called a code point, is nor mally
shown in hexadecimal, with “U+” prepended. 49,333 in hex is C0B5, so k is
referr ed to as U+C0B5. Included as part of the Unicode concept is a set of attributes
for many characters, such as “3 is a digit” and “É is an uppercase letter whose low-
ercase equivalent is é.”

At this level, nothing is yet said about just how these numbers are actually
encoded as data on a computer. Ther e ar e a variety of ways to do so, including
the UCS-2 encoding (all characters encoded with two bytes), the UCS-4 encoding
(all characters encoded with four bytes), UTF-16 (most characters encoded with
two bytes, but some with four), and the UTF-8 encoding (characters encoded with
one to six bytes). Exactly which (if any) of these encodings a particular program
uses internally is usually not a concern to the user of the program. The user’s con-
cer n is usually limited to how to convert external data (such as data read from a
file) from a known encoding (ASCII, Latin-1, UTF-8, etc.) to whatever the program
uses. Programs that work with Unicode usually supply various encoding and
decoding routines for doing the conversion.

Regular expressions for programs that work with Unicode often support a \unum

metasequence that can be used to match a specific Unicode character (+ 116).
The number is usually given as a four-digit hexadecimal number, so \uC0B5

matches k. It’s important to realize that \uC0B5 is saying “match the Unicode
character U+C0B5,” and says nothing about what actual bytes are to be compar ed,

29 April 2003 09:19

which is dependent on the particular encoding used internally to repr esent Uni-
code code points. If the program happens to use UTF-8 internally, that character
happens to be repr esented with three bytes. But you, as someone using the Uni-
code-enabled program, don’t really need to care.

But, there are some related issues that you may need to be aware of...

Character s versus combining-character sequences. What a person considers a
“character” doesn’t always agree with what Unicode or a Unicode-enabled
pr ogram (or regex engine) considers to be a character. For example, most would
consider à to be a single character, but in Unicode, it’s composed of two code
points, U+0061 (a) combined with the grave accent U+0300 (`). Unicode offers a
number of combining characters that are intended to follow (and be combined
with) a base character. This makes things a bit more complex for the regular-
expr ession engine — for example, should dot match just one code point, or the
entir e U+0061 plus U+0300 combination?

In practice, it seems that many programs treat “character” and “code point” as syn-
onymous, which means that dot matches each code point individually, whether it
is base character or one of the combining characters. Thus, à (U+0061 plus U+0300)
is matched by !ˆ..$ ", and not by !ˆ.$ ".

Perl happens to support the \X metasequence, which fulfills what many might
expect from dot (“match one character ”) in that it matches a base character fol-
lowed by any number of combining characters. See more on page 125.

It’s important to keep combining characters in mind when using a Unicode-
enabled editor to input Unicode characters directly into regular-expr essions. If an
accented character, say Å, ends up in a regular expression as ‘A’ plus ‘˚’, it likely
can’t match a string containing the single code point version of Å (single code
point versions are discussed in the next section). Also, it appears as two distinct
characters to the regular-expr ession engine itself, so specifying ![˙˙˙Å˙˙˙]" adds the
two characters to the class, just as the explicit ![˙˙˙A˚˙˙˙]" does. If followed by a
quantifier, such an Å has the quantifier applying only to the accent, just as with an
explicit ! A˚+ ".

Multiple code points for the same character. In theory, Unicode is supposed to
be a one-to-one mapping between code points and characters, but there are many
situations where one character can have multiple repr esentations. In the previous
section I note that à is U+0061 followed by U+0300. It is, however, also encoded
separately as the single code point U+00E0. Why is it encoded twice? To maintain
easier conversion between Unicode and Latin-1. If you have Latin-1 text that you
convert to Unicode, à will likely be converted to U+00E0. But, it could well be
converted to a U+0061, U+0300 combination. Often, there’s nothing you can do to
automatically allow for these differ ent ways of expressing characters, but Sun’s

Str ings, Character Encodings, and Modes 107

29 April 2003 09:19

108 Chapter 3: Over view of Regular Expression Features and Flavors

java.util.regex package provides a special match option, CANONREQ, which
causes characters that are “canonically equivalent” to match the same, even if their
repr esentations in Unicode differ (+ 380).

Somewhat related is that differ ent characters can look virtually the same, which
could account for some confusion at times among those creating the text you’re
tasked to check. For example, the Roman letter I (U+0049) could be confused with
{, the Greek letter Iota (U+0399). Add dialytika to that to get Ï or {̈, and it can be
encoded four differ ent ways (U+00CF; U+03AA; U+0049 U+0308; U+0399 U+0308).
This means that you might have to manually allow for these four possibilities
when constructing a regular expression to match Ï. Ther e ar e many examples
like this.

Also plentiful are single characters that appear to be more than one character. For
example, Unicode defines a character called “SQUARE HZ” (U+3390), which appears
as ?. This looks very similar to the two normal characters Hz (U+0048 U+007A).

Although the use of special characters like ? is minimal now, their adoption over
the coming years will increase the complexity of programs that scan text, so those
working with Unicode would do well to keep these issues in the back of their
mind. Along those lines, one might already expect, for example, the need to allow
for both normal spaces (U+0020) and no-break spaces (U+00A0), and perhaps also
any of the dozen or so other types of spaces that Unicode defines.

Unicode 3.1+ and code points beyond U+FFFF. With the release of Unicode
Version 3.1 in mid 2001, characters with code points beyond U+FFFF wer e added.
(Pr evious versions of Unicode had built in a way to allow for characters at those
code points, but until Version 3.1, none were actually defined.) For example, there
is a character for musical symbol C Clef defined at U+1D121. Older programs built
to handle only code points U+FFFF and below won’t be able to handle this. Most
pr ograms’ \unum indeed allow only a four-digit hexadecimal number.

One program that can handle characters at these new code points is Perl. Rather
than \unum, it has \x{num} wher e the number can be any number of digits. You
can then use \x{1D121} to match the C Clef character.

Unicode line terminator. Unicode defines a number of characters (and one
sequence of two characters) that are to be consider ed line terminators, shown in
Table 3-5.

When fully supported, line terminators influence how lines are read from a file
(including, in scripting languages, the file the program is being read from). With
regular expressions, they can influence both what dot matches (+ 110), and where
!ˆ ", !$ ", and !\Z " match (+ 111).

29 April 2003 09:19

Table 3-5: Unicode Line Ter minators

Character s Descr iption

LF U+000A ASCII Line Feed
VT U+000B ASCII Vertical Tab
FF U+000C ASCII For m Feed
CR U+000D ASCII Carriage Return
CR/LF U+000D U+000A ASCII Carriage Return / Line Feed sequence
NEL U+0085 Unicode NEXT LINE

LS U+2028 Unicode LINE SEPARATOR

PS U+2029 Unicode PARAGRAPH SEPARATOR

Regex Modes and Match Modes
Most regex engines support a number of differ ent modes for how a regular
expr ession is interpreted or applied. We’ve seen an example of each with Perl’s /x
modifier (regex mode that allows free whitespace and comments + 72) and /i

modifier (match mode for case-insensitive matching + 47).

Modes can generally be applied globally to the whole regex, or in many modern
flavors, partially, to specific subexpressions of the regex. The global application is
achieved through modifiers or options, such as Perl’s /i or java.util.regex’s
Pattern.CASERINSENSITIVE flag (+ 98). If supported, the partial application of a
mode is achieved with a regex construct that looks like !(?i) " to turn on case-in-
sensitive matching, or !(?-i) " to turn it off. Some flavors also support !(?i:˙˙˙)" and
!(?-i:˙˙˙)", which turn on and off case-insensitive matching for the subexpression
enclosed.

How these modes are invoked within a regex is discussed later in this chapter
(+ 133). In this section, we’ll merely review some of the modes commonly avail-
able in most systems.

Case-insensitive match mode

The almost ubiquitous case-insensitive match mode ignores letter case during
matching, so that !b " matches both ‘b’ and ‘B’. This feature relies upon proper char-
acter encoding support, so all the cautions mentioned earlier apply.

Historically, case-insensitive matching support has been surprisingly fraught with
bugs. Most have been fixed over the years, but some still linger. As we saw in the
first chapter, GNU egr ep ’s case-insensitive matching doesn’t apply to backrefer-
ences. Ruby’s case-insensitive matching doesn’t apply to octal and hex escapes.

Ther e ar e special Unicode-related issues with case-insensitive matching (which
Unicode calls “loose matching”). For starters, not all alphabets have the concept of
upper and lower case, and some have an additional title case used only at the start

Str ings, Character Encodings, and Modes 109

29 April 2003 09:19

110 Chapter 3: Over view of Regular Expression Features and Flavors

of a word. Sometimes there’s not a straight one-to-one mapping between upper
and lower case. A common example is that a Greek Sigma, Σ, has two lowercase
versions, ς and σ; all three should mutually match in case-insensitive mode. (Of
the systems I’ve tested, only Perl does this correctly.)

Another issue is that sometimes a single character maps to a sequence of multiple
characters. One well known example is that the uppercase version of ß is the two-
character combination “SS”. Ther e ar e also Unicode-manufactured problems. One
example is that while there’s a single character : (U+01F0), it has no single-charac-
ter uppercase version. Rather, J̌ requir es a combining sequence (+ 107), U+004A

and U+030C. Yet, : and J̌ should match in a case-insensitive mode. There are even
examples like this that involve one-to-three mappings. Luckily, most of these do
not involve commonly-used characters.

Free-spacing and comments regex mode

In this mode, whitespace outside of character classes is mostly ignored. White-
space within a character class still counts (except in java.util.regex), and com-
ments are allowed between # and a newline. We’ve already seen examples of this
for Perl (+ 72), Java (+ 98), and VB.NET (+ 99).

It’s not quite true that all whitespace outside of classes is ignored. It’s more as if
whitespace is turned into a do-nothing metacharacter. The distinction is important
with something like !\12 3 ", which in this mode is taken as !\12 " followed by !3 ",
and not !\123 ", as some might expect.

Of course, just what is and isn’t “whitespace” is subject to the character encoding
in effect, and its fullness of support. Most programs recognize only ASCII

whitespace.

Dot-matches-all match mode (a.k.a., “single-line mode”)

Usually, dot does not match a newline. The original Unix regex tools worked on a
line-by-line basis, so the thought of matching a newline wasn’t even an issue until
the advent of sed and lex. By that time, ! .+ " had become a common idiom to
match “the rest of the line,” so the new languages disallowed it from crossing line
boundaries in order to keep it familiar.† Thus, tools that could work with multiple
lines (such as a text editor) generally disallow dot from matching a newline.

For modern programming languages, a mode in which dot matches a newline can
be as useful as one where dot doesn’t. Which of these is most convenient for a
particular situation depends, well, on the situation. Many programs now offer ways
for the mode to be selected on a per-r egex basis.

† As Ken Thompson (ed ’s author) explained it to me, it kept ! .+ " fr om becoming “too unwieldy.”

29 April 2003 09:19

Ther e ar e a few exceptions to the common standard. Unicode-enabled systems,
such as Sun’s Java regex package, may expand what dot normally does not match
to include any of the single-character Unicode line terminators (+ 108). Tcl’s nor-
mal state is that its dot matches everything, but in its special “newline-sensitive”
and “partial newline-sensitive” matching modes, both dot and a negated character
class are prohibited from matching a newline.

An unfor tunate name. When first introduced by Perl with its /s modifier, this
mode was called “single-line mode.” This unfortunate name continues to cause no
end of confusion because it has nothing whatsoever to do with !ˆ " and !$ ", which
ar e influenced by the “multiline mode” discussed in the next section. “Single-line
mode” merely means that dot has no restrictions and can match any character.

Enhanced line-anchor match mode (a.k.a., “multiline mode”)

An enhanced line-anchor match mode influences where the line anchors, !ˆ " and
!$ ", match. The anchor !ˆ " nor mally does not match at embedded newlines, but
rather only at the start of the string that the regex is being applied to. However, in
enhanced mode, it can also match after an embedded newline, effectively having
!ˆ " tr eat the string as multiple logical lines if the string contains newlines in the
middle. We saw this in action in the previous chapter (+ 69) while developing a
Perl program to converting text to HTML. The entire text document was within a
single string, so we could use the search-and-r eplace s/ˆ$/<p>/mg to convert
“ . . . tags. 1 1 It’s . . .” to “ . . . tags. 1<p>1 It’s . . .” The substitution replaces empty
“lines” with paragraph tags.

It’s much the same for !$ ", although the basic rules about when !$ " can normally
match can be a bit more complex to begin with (+ 127). However, as far as this
section is concerned, enhanced mode simply includes locations before an embed-
ded newline as one of the places that !$ " can match.

Pr ograms that offer this mode often offer !\A " and !\Z ", which normally behave the
same as !ˆ " and !$ " except they are not modified by this mode. This means that !\A "

and !\Z " never match at embedded newlines. Some implementations also allow !$ "

and !\Z " to match before a string-ending newline. Such implementations often offer
!\z ", which disregards all newlines and matches only at the very end of the string.
See page 127 for details.

As with dot, there are exceptions to the common standard. A text editor like GNU

Emacs normally lets the line anchors match at embedded newlines, since that
makes the most sense for an editor. On the other hand, lex has its !$ " match only
befor e a newline (while its !ˆ " maintains the common meaning.)

Unicode-enabled systems, such as Sun’s java.util.regex, may allow the line
anchors in this mode to match at any line terminator (+ 108). Ruby’s line anchors

Str ings, Character Encodings, and Modes 111

29 April 2003 09:19

112 Chapter 3: Over view of Regular Expression Features and Flavors

nor mally do match at any embedded newline, and Python’s !\Z " behaves like its
!\z ", rather than its normal !$ ".

Tr a d i t i o n a l l y , this mode has been called “multiline mode.” Although it is unrelated
to “single-line mode,” the names confusingly imply a relation. One simply modi-
fies how dot matches, while the other modifies how !ˆ " and !$ " match. Another
pr oblem is that they approach newlines from differ ent views. The first changes the
concept of how dot treats a newline from “special” to “not special,” while the
other does the opposite and changes the concept of how !ˆ " and !$ " tr eat newlines
fr om “not special” to “special.” †

Literal-text regex mode

A “literal text” mode is one that doesn’t recognize most or all regex metachar-
acters. For example, a literal-text mode version of ![a-z]+ " matches the string
‘[a-z]+’. A fully literal search is the same as a simple string search (“find this
string” as opposed to “find a match for this regex”), and programs that offer regex
support also tend to offer separate support for simple string searches. A regex lit-
eral-text mode becomes more inter esting when it can be applied to just part of a
regular expression. For example, Perl regex literals offer the special sequence
\Q˙˙˙\E, the contents of which have all metacharacters ignored (except the \E

itself, of course).

Common Metacharacter s and Features
The following overview of current regex metacharacters covers common items and
concepts. It doesn’t discuss every issue, and no one tool includes everything pre-
sented here. In one respect, this is just a summary of much of what you’ve seen in
the first two chapters, but in light of the wider, mor e complex world presented at
the beginning of this chapter. During your first pass through this section, a light
glance should allow you to continue on to the next chapters. You can come back
her e to pick up details as you need them.

Some tools add a lot of new and rich functionality and some gratuitously change
common notations to suit their whim or special needs. Although I’ll sometimes
comment about specific utilities, I won’t address too many tool-specific concerns
her e. Rather, in this section I’ll just try to cover some common metacharacters and
their uses, and some concerns to be aware of. I encourage you to follow along
with the manual of your favorite utility.

† Tcl normally lets its dot match everything, so in one sense it’s more straightforward than other lan-
guages. In Tcl regular expressions, newlines are not normally treated specially in any way (neither to
dot nor to the line anchors), but by using match modes, they become special. However, since other
systems have always done it another way, Tcl could be considered confusing to those used to those
other ways.

29 April 2003 09:19

The following is an outline of the constructs covered in this section, with pointers
to the page where each sub-section starts:

Character Representations
Character Shorthands: \n, \t, \e, ...+ 114
Octal Escapes: \num+ 115
Hex/Unicode Escapes: \xnum, \x{num}, \unum, \Unum, ...+ 116
Contr ol Characters: \cchar+ 116

Character Classes and class-like constructs
Nor mal classes: [a-z] and [ˆa-z]+ 117
Almost any character: dot+ 118
Class shorthands: \w, \d, \s, \W, \D, \S+ 119
Unicode properties, blocks, and categories: \p{Pr op}, \P{Pr op}+ 119
Class set operations: [[a-z]&&[ˆaeiou]]+ 123
Unicode Combining Character Sequence: \X+ 125
POSIX bracket-expr ession “character class”: [[:alpha:]]+ 125
POSIX bracket-expr ession “collating sequences”: [[.span-ll.]]>+ 126
POSIX bracket-expr ession “character equivalents”: [[=n=]]+ 126
Emacs syntax classes+ 127

Anchors and Other “Zero-Width Assertions”
Start of line/string: ˆ, \A+ 127
End of line/string: $, \Z, \z+ 127
Start of match (or end of previous match): \G+ 128
Word boundaries: \b, \B, \<, \>, ...+ 131
Lookahead (?=˙˙˙), (?!˙˙˙); Lookbehind, (?<=˙˙˙), (?<!˙˙˙)+ 132

Comments and mode-modifiers
Mode modifier: (?modifier), such as (?i) or (?-i)+ 133
Mode-modified span: (?modifier:˙˙˙), such as (?i:˙˙˙)+ 134
Comments: (?#˙˙˙) and #˙˙˙+ 134
Literal-text span: \Q˙˙˙\E+ 134

Gr ouping, Capturing, Conditionals, and Control
Capturing/gr ouping par entheses: (˙˙˙), \1, \2, ...+ 135
Gr ouping-only par entheses: (?:˙˙˙)+ 136
Named capture: (?<Name>˙˙˙)+ 137
Atomic grouping: (?>˙˙˙)+ 137
Alter nation: ˙˙˙<˙˙˙<˙˙˙+ 138
Conditional: (? if then < else)+ 138
Gr eedy quantifiers: ,, +, ?, {num,num}+ 139
Lazy quantifiers: ,?, +?, ??, {num,num}?+ 140
Possessive quantifiers: ,+, ++, ?+, {num,num}++ 140

Common Metacharacter s and Features 113

29 April 2003 09:19

114 Chapter 3: Over view of Regular Expression Features and Flavors

Character Representations
This group of metacharacters provides visually pleasing ways to match specific
characters that are otherwise difficult to repr esent.

Character shorthands

Many utilities provide metacharacters to repr esent certain control characters that
ar e sometimes machine-dependent, and which would otherwise be difficult to
input or to visualize:

\a Aler t (e.g., to sound the bell when “printed”) Usually maps to the ASCII

<BEL> character, 007 octal.

\b Backspace Usually maps to the ASCII <BS> character, 010 octal. (Note !\b "

often is a word-boundary metacharacter instead, as we’ll see later.)

\e Escape character Usually maps to the ASCII <ESC> character, 033 octal.

\f Form feed Usually maps to the ASCII <FF> character, 014 octal.

\n Newline On most platforms (including Unix and DOS/Windows), usually
maps to the ASCII <LF> character, 012 octal. On MacOS systems, usually
maps to the ASCII <CR> character, 015 octal. With Java or any .NET lan-
guage, always the ASCII <LF> character regardless of platform.

\r Car ria ge retur n Usually maps to the ASCII <CR> character. On MacOS sys-
tems, usually maps to the ASCII <LF> character. With Java or any .NET lan-
guage, always the ASCII <CR> character regardless of platform.

\t Nor mal (hor izontal) ta b Usually maps to the ASCII <HT> character, 011

octal.

\v Vertical tab Usually maps to the ASCII <VT> character, 013 octal.

Table 3-6 lists a few common tools and some of the character shorthands they pro-
vide. As discussed earlier, some languages also provide many of the same short-
hands for the string literals they support. Be sure to review that section (+ 101) for
some of the associated pitfalls.

These are machine dependent?

As noted in the list, \n and \r ar e operating-system dependent in many tools,† so,
it’s best to choose carefully when you use them. When you need, for example, “a

† If the tool itself is written in C or C++, and converts its regex backslash escapes into C backslash
escapes, the resulting value is dependent upon the compiler used, since the C standard leaves the
actual values to the discretion of the compiler vendor. In practice, compilers for any particular plat-
for m ar e standardized around newline support, so it’s safe to view these as operating-system depen-
dent. Further more, it seems that only \n and \r vary across operating systems , so the others can be
consider ed standard across all systems.

29 April 2003 09:19

Table 3-6: A Few Utilities and Some of the Shorthand Metacharacters They Provide

(w
o

rd
b

o
u

n
d

ar
 y)

(b
ac

ks
p

ac
e)

(a
la

r m
)

(A
SC

II
es

ca
p

e)

(f
o

r m
fe

ed
)

(n
ew

lin
e)

(c
ar

 ri
a g

e
re

tu
r n

)

(t
a b

)

(v
er

 ti
ca

lt
a b

)

\b \b \a \e \f \n \r \t \v

Program Character shorthands

Python 3 3C 3 3 3 3 3 3

Tcl as \y 3 3 3 3 3 3 3 3

Perl 3 3C 3 3 3 3 3 3

Java 3X X 3 3 3SR 3SR 3SR 3SR 3

GNU awk 3 3 3 3 3 3 3

GNU sed 3 3

GNU Emacs 3 S S S S S S S S

.NET 3 3C 3 3 3 3 3 3 3

PHP 3 3C 3 3 3 3 3 3

MySQL

GNU grep/egr ep 3

flex 3 3 3 3 3 3 3

Ruby 3 3C 3 3 3 3 3 3 3

3 supported 3C supported in class only See page 91 for version information

3SR supported (also supported by string literals)
3X supported (but string literals have a differ ent meaning for the same sequence)

X not supported (but string literals have a differ ent meaning for the same sequence)

S not supported (but supported by string literals)
This table assumes the most regex-friendly type of string per application (+ 101)

newline” for whatever system your script will happen to run on, use \n. When
you need a character with a specific value, such as when writing code for a
defined protocol like HT TP, use \012 or whatever the standard calls for. (\012 is
an octal escape.) If you wish to match DOS line-ending characters, use !\015\012 ".
To match either DOS or Unix line-ending characters, use !\015?\012 ". (These actu-
ally match the line-ending characters — to match at the start or end of a line, use a
line anchor + 127).

Octal escape—\num

Implementations supporting octal (base 8) escapes generally allow two- and three-
digit octal escapes to be used to indicate a byte or character with a particular
value. For example, !\015\012 " matches an ASCII CR/LF sequence. Octal escapes

Common Metacharacter s and Features 115

29 April 2003 09:19

116 Chapter 3: Over view of Regular Expression Features and Flavors

can be convenient for inserting hard-to-type characters into an expression. In Perl,
for instance, you can use !\e " for the ASCII escape character, but you can’t in awk.
Since awk does support octal escapes, you can use the ASCII code for the escape
character directly: !\033 ".

Table 3-7 shows the octal escapes some tools support.

Some implementations, as a special case, allow !\0 " to match a null byte. Some
allow all one-digit octal escapes, but usually don’t if backrefer ences such as !\1 " ar e
supported. When there’s a conflict, backrefer ences generally take precedence over
octal escapes. Some allow four-digit octal escapes, usually to support a requir e-
ment that any octal escape begin with a zero (such as with java.util.regex).

You might wonder what happens with out-of-range values like \565 (8-bit octal
values range from \000 to \377). It seems that half the implementations leave it as
a larger-than-byte value (which may match a Unicode character if Unicode is sup-
ported), while the other half strip it to a byte. In general, it’s best to limit octal
escapes to \377 and below.

Hex and Unicode escapes: \xnum, \x{num}, \unum, \Unum, ...

Similar to octal escapes, many utilities allow a hexadecimal (base 16) value to be
enter ed using \x, \u, or sometimes \U. If allowed with \x, for example,
!\x0D\x0A " matches the CR/LF sequence. Table 3-7 shows the hex escapes that
some tools support.

Besides the question of which escape is used, you must also know how many dig-
its they recognize, and if braces may be (or must be) used around the digits.
These are also indicated in Table 3-7.

Control character s: \cchar

Many flavors offer the !\cchar " sequence to match contr ol characters with encoding
values less than 32 (some allow a wider range). For example, !\cH " matches a Con-
tr ol-H, which repr esents a backspace in ASCII, while !\cJ " matches an ASCII linefeed
(which is often also matched by !\n ", but sometimes by !\r ", depending on the plat-
for m + 114).

Details aren’t uniform among systems that offer this construct. You’ll always be
safe using uppercase English letters as in the examples. With most implementa-
tions, you can use lowercase letters as well, but Sun’s Java regex package, for
example, does not support them. And what exactly happens with non-alphabetics
is very flavor-dependent, so I recommend using only uppercase letters with \c.

Related Note: GNU Emacs supports this functionality, but with the rather ungainly
metasequence !?\ˆchar " (e.g., !?\ˆH " to match an ASCII backspace).

29 April 2003 09:19

Table 3-7: A Few Utilities and the Octal and Hex Regex Escapes Their Regexes Support

Back-
references Octal escapes Hex escapes

Python 3 \0, \07, \377 \xFF

Tcl 3 \0, \77, \777 \x˙˙˙ \uFFFF; \UFFFFFFFF

Perl 3 \0, \77, \377 \xFF; \x{˙˙˙}

Java 3 \07, \077, \0377 \xFF; \uFFFF

GNU awk \7, \77, \377 \x˙˙˙

GNU sed 3

GNU Emacs 3

.NET 3 \0, \77, \377 \xFF, \uFFFF

PHP 3 \77, \377 \xF, \xFF

MySQL

GNU egr ep 3

GNU gr ep

flex \7, \77, \377 \xF, \xFF

Ruby 3 \0, \77, \377, \0377 \xF, \xFF

\0 – !\0 " matches a null byte, but other one-digit octal escapes are not supported
\7, \77 – one- and two- digit octal escapes are supported
\07 – two-digit octal escapes are supported if leading digit is a zero
\077 – thr ee-digit octal escapes are supported if leading digit is a zero
\377 – thr ee-digit octal escapes are supported, until \377
\0377 – four-digit octal escapes are supported, until \0377
\777 – thr ee-digit octal escapes are supported, until \777
\x˙˙˙ – \x allows any number of digits
\x{˙˙˙} – \x{˙˙˙} allows any number of digits
\xF, \xFF – one- and two- digit hex escape is allowed with \x

\uFFFF – four-digit hex escape allowed with \u

\UFFFF – four-digit hex escape allowed with \U

\UFFFFFFFF – eight-digit hex escape allowed with \U (See page 91 for version information.)

Character Classes and Class-Like Constr ucts
Moder n flavors provide a number of ways to specify a set of characters allowed at
a particular point in the regex, but the simple character class is ubiquitous.

Nor mal classes: [a-z] and [ˆa-z]

The basic concept of a character class has already been well covered, but let me
emphasize again that the metacharacter rules change depending on whether
you’r e in a character class or not. For example, ! + " is never a metacharacter within
a class, while !-" usually is. Some metasequences, such as !\b ", sometimes have a
dif ferent meaning within a class than outside of one (+ 115).

Common Metacharacter s and Features 117

29 April 2003 09:19

118 Chapter 3: Over view of Regular Expression Features and Flavors

With most systems, the order that characters are listed in a class makes no differ-
ence, and using ranges instead of listing characters is irrelevant to the execution
speed (e.g., [0-9] should be no differ ent fr om [9081726354]). However, some
implementations don’t completely optimize classes (Sun’s Java regex package
comes to mind), so it’s usually best to use ranges, which tend to be faster, wher-
ever possible.

A character class is always a positive assertion. In other words, it must always
match a character to be successful. A negated class must still match a character,
but one not listed. It might be convenient to consider a negated character class to
be a “class to match characters not listed.” (Be sure to see the warning about dot
and negated character classes, in the next section.) It used to be true that some-
thing like ![ˆLMNOP] " was the same as ![\x00-KQ-\xFF] ". In strictly eight-bit sys-
tems, it still is, but in a system such as Unicode where character ordinals go
beyond 255 (\xFF), a negated class like ![ˆLMNOP] " suddenly includes all the tens
of thousands of characters in the encoding—all except L, M, N, O, and P.

Be sure to understand the underlying character set when using ranges. For exam-
ple, ![a-Z] " is likely an error, and in any case certainly isn’t “alphabetics.” One
specification for alphabetics is ![a-zA-Z] ", at least for the ASCII encoding. (See
\p{L} in “Unicode properties” + 119.) Of course, when dealing with binary data,
ranges like ‘\x80-\xFF’ within a class make perfect sense.

Almost any character: dot

In some tools, dot is a shorthand for a character class that can match any charac-
ter, while in most others, it is a shorthand to match any character except a newline.
It’s a subtle differ ence that is important when working with tools that allow target
text to contain multiple logical lines (or to span logical lines, such as in a text edi-
tor). Concerns about dot include:

• In some Unicode-enabled systems, such as Sun’s Java regex package, dot nor-
mally does not match a Unicode line terminator (+ 108).

• A match mode (+ 110) can change the meaning of what dot matches.

• The POSIX standard dictates that dot not match a null (a character with the
value zero), although all the major scripting languages allow nulls in their text
(and dot matches them).

Dot ver sus a negated character class
When working with tools that allow multiline text to be searched, take care to
note that dot usually does not match a newline, while a negated class like ![ˆ"] "

usually does. This could yield surprises when changing from something such as
!".+"" to !"[ˆ"]+"". The matching qualities of dot can often be changed by a match
mode—see “Dot-matches-all match mode” on page 110.

29 April 2003 09:19

Class shorthands: \w, \d, \s, \W, \D, \S

Support for the following shorthands is quite common:

\d Dig it Generally the same as ![0-9] " or, in some Unicode-enabled tools, all
Unicode digits.

\D Non-dig it Generally the same as ![ˆ\d] "

\w Part-of-word character Often the same as ![a-zA-Z0-9R]", although some
tools omit the underscore, while others include all the extra alphanumer-
ics characters in the locale (+ 87). If Unicode is supported, !\w " usually
refers to all alphanumerics (notable exception: Sun’s Java regex package,
whose !\w " is exactly ![a-zA-Z0-9R]").

\W Non-word character Generally the same as ![ˆ\w] ".

\s Whitespace character On ASCII-only systems, this is often the same as
![\f\n\r\t\v] ". Unicode-enabled systems sometimes also include the
Unicode “next line” control character U+0085, and sometimes the “white-
space” property !\p{Z} " (described in the next section).

\S Non-whitespace character Generally the same as ![ˆ\s] ".

As described on page 87, a POSIX locale could influence the meaning of these
shorthands (in particular, !\w "). Unicode-enabled programs likely have !\w " match a
much wider scope of characters, such as !\p{L} " (discussed in the next section)
plus an underscore.

Unicode proper ties, scr ipts, and blocks: \p{Prop}, \P{Prop}

On its surface, Unicode is a mapping (+ 106), but the Unicode Standard offers
much more. It also defines qualities about each character, such as “this character is
a lowercase letter,” “this character is meant to be written right-to-left,” “this charac-
ter is a mark that’s meant to be combined with another character,” etc.

Regular-expr ession support for these qualities varies, but many Unicode-enabled
pr ograms support matching via at least some of them with !\p{quality}" (matches
characters that have the quality) and !\P{quality}" (matches characters without it).
One example is !\p{L} ", wher e ‘L’ is the quality meaning “letter” (as opposed to
number, punctuation, accents, etc.). !\p{L} " is an example of a general property
(also called a category). We’ll soon see other “qualities” that can be tested by
!\p{˙˙˙}" and !\P{˙˙˙}", but the most commonly supported are the general properties.

The general properties are shown in Table 3-8. Each character (each code point
actually, which includes those that have no characters defined) can be matched by
just one general property. The general property names are one character (‘L’ for
Letter, ‘S’ for symbol, etc.), but some systems support a more descriptive synonym
(‘Letter’, ‘Symbol’, etc.) as well. Perl, for example, supports these.

Common Metacharacter s and Features 119

29 April 2003 09:19

120 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-8: Basic Unicode Properties

Class Synonym and description

\p{L} \p{Letter} – Things considered letters.

\p{M} \p{Mark} – Various characters that are not meant to appear by themselves,
but with other base characters (accent marks, enclosing boxes, . . .).

\p{Z} \p{Separator} – Characters that separate things, but have no visual
repr esentation (various kinds of spaces . . .).

\p{S} \p{Symbol} – Various types of Dingbats and symbols.

\p{N} \p{Number} – Any kind of numeric character.

\p{P} \p{Punctuation} – Punctuation characters.

\p{C} \p{Other} – Catch-all for everything else (rarely used for normal characters).

With some systems, single-letter property names may be refer enced without the
curly braces (e.g., using !\pL " instead of !\p{L} "). Some systems may requir e (or
simply allow) ‘In’ or ‘Is’ to prefix the letter (e.g., !\p{IsL} "). As we look at addi-
tional qualities, we’ll see examples of where an Is/In pr efix is requir ed.†

Each one-letter general Unicode property can be further subdivided into a set of
two-letter sub-properties, as shown in Table 3-9. Additionally, some implementa-
tions support a special composite sub-property, !\p{L&} ", which is a shorthand for
all “cased” letters: ![\p{Lu}\p{Ll}\p{Lt}] ".

Also shown are the full-length synonyms (e.g., “LowercaseRLetter” instead of
“Ll”), which may be supported by some implementations. The standard suggests
that a variety of forms be accepted (‘LowercaseLetter’, ‘LOWERCASERLETTER’,
‘Lowercase Letter’, ‘lowercase-letter’, etc.), but I recommend, for consis-
tency, always using the form shown in Table 3-9.

Scr ipts. Some systems have support for matching via a script (writing system)
name with !\p{˙˙˙}". For example, if supported, !\p{Hebrew} " matches characters
that are specifically part of the Hebrew writing system. (A script does not match
common characters that might be used by other writing systems as well, such as
spaces and punctuation.)

Some scripts are language-based (such as Gujarati, Thai, Cherokee, ...). Some
span multiple languages (e.g., Latin, Cyrillic), while some languages are com-
posed of multiple scripts, such as Japanese, which uses characters from the
Hiragana, Katakana, Han (“Chinese Characters”), and Latin scripts. See your sys-
tem’s documentation for the full list.

† As we’ll see (and is illustrated in the table on page 123), the whole Is/In pr efix business is some-
what of a mess. Previous versions of Unicode recommend one thing, while early implementations
often did another. During Perl 5.8’s development, I worked with the development group to simplify
things for Perl. The rule in Perl now is simply “You don’t need to use ‘Is’ or ‘In’ unless you specifi-
cally want a Unicode Block (+ 122), in which case you must prepend ‘In’.”

29 April 2003 09:19

Table 3-9: Basic Unicode Sub-Properties

Proper ty Synonym and description

\p{Ll} \p{LowercaseQLetter} – Lowercase letters.
\p{Lu} \p{UppercaseQLetter} – Uppercase letters.
\p{Lt} \p{TitlecaseQLetter} – Letters that appear at the start of a word (e.g., the

character Dž is the title case of the lowercase dž and of the uppercase DŽ).
\p{L&} A composite shorthand matching all \p{Ll}, \p{Lu}, and \p{Lt} characters.
\p{Lm} \p{ModifierQLetter} – A small set of letter-like special-use characters.
\p{Lo} \p{OtherQLetter} – Letters that have no case, and aren’t modifiers, including

letters from Hebrew, Arabic, Bengali, Tibetan, Japanese, ...

\p{Mn} \p{NonQSpacingQMark} – “Characters” that modify other characters, such as
accents, umlauts, certain “vowel signs,” and tone marks.

\p{Mc} \p{SpacingQCombiningQMark} – Modification characters that take up space of
their own (mostly “vowel signs” in languages that have them, including Bengali,
Gujarati, Tamil, Telugu, Kannada, Malayalam, Sinhala, Myanmar, and Khmer).

\p{Me} \p{EnclosingQMark} – A small set of marks that can enclose other characters,
such as circles, squares, diamonds, and “keycaps.”

\p{Zs} \p{SpaceQSeparator} – Various kinds of spacing characters, such as a normal
space, non-break space, and various spaces of specific widths.

\p{Zl} \p{LineQSeparator} – The LINE SEPARATOR character (U+2028).
\p{Zp} \p{ParagraphQSeparator} – The PARAGRAPH SEPARATOR character (U+2029).

\p{Sm} \p{MathQSymbol} – +, ÷, a fraction slash, 0, ...
\p{Sc} \p{CurrencyQSymbol} – $, ¢, ¥, P, ...
\p{Sk} \p{ModifierQSymbol} – Mostly versions of the combining characters, but as

full-fledged characters in their own right.
\p{So} \p{OtherQSymbol} – Various Dingbats, box-drawing symbols, Braille patterns,

non-letter Chinese characters, ...

\p{Nd} \p{DecimalQDigitQNumber} – Zer o thr ough nine, in various scripts (not
including Chinese, Japanese, and Korean).

\p{Nl} \p{LetterQNumber} – Mostly Roman numerals.
\p{No} \p{OtherQNumber} – Numbers as superscripts or symbols; characters repr e-

senting numbers that aren’t digits (Chinese, Japanese, and Korean not included).

\p{Pd} \p{DashQPunctuation} – Hyphens and dashes of all sorts.
\p{Ps} \p{OpenQPunctuation} – Characters like (, N, and 4, ...
\p{Pe} \p{CloseQPunctuation} – Characters like), O, 5, ...
\p{Pi} \p{InitialQPunctuation} – Characters like «, 7, 8, ...
\p{Pf} \p{FinalQPunctuation} – Characters like », 6, 9, ...
\p{Pc} \p{ConnectorQPunctuation} – A few punctuation characters with special

linguistic meaning, such as an underscore.
\p{Po} \p{OtherQPunctuation} – Catch-all for other punctuation: !, &, ⋅, :,, ...

\p{Cc} \p{Control} – The ASCII and Latin-1 control characters (TAB, LF, CR, ...)
\p{Cf} \p{Format} – Non-visible characters intended to indicate some basic formatting

(zer o width joiner, activate Arabic form shaping, ...)
\p{Co} \p{PrivateQUse} – Code points allocated for private use (company logos, etc.).
\p{Cn} \p{Unassigned} – Code points that have no characters assigned.

Common Metacharacter s and Features 121

29 April 2003 09:19

122 Chapter 3: Over view of Regular Expression Features and Flavors

A script does not include all characters used by the particular writing system, but
rather, all characters used only (or predominantly) by that writing system. Com-
mon characters, such as spacing and punctuation marks, are not included within
any script, but rather are included as part of the catch-all pseudo-script IsCommon,
matched by !\p{IsCommon} ". A second pseudo-script, Inherited, is composed of
certain combining characters that inherit the script from the base character that
they follow.

Blocks. Similar (but inferior) to scripts, blocks refer to ranges of code points on
the Unicode character map. For example, the Tibetan block refers to the 256
code points from U+0F00 thr ough U+0FFF. Characters in this block are matched
with \p{InTibetan} in Perl and java.util.regex, and with \p{IsTibetan} in
.NET. (Mor e on this in a bit.)

Ther e ar e many blocks, including blocks for most systems of writing (Hebrew,
Tamil, BasicRLatin, HangulRJamo, Cyrillic, Katakana, ...), and for special
character types (Currency, Arrows, BoxRDrawing, Dingbats, ...).

Tibetan is one of the better examples of a block, since all characters in the block
that are defined relate to the Tibetan language, and there are no Tibetan-specific
characters outside the block. Block qualities, however, are inferior to script quali-
ties for a number of reasons:

• Blocks can contain unassigned code points. For example, about 25% of the
code points in the Tibetan block have no characters assigned to them.

• Not all characters that would seem related to a block are actually part of that
block. For example, the Currency block does not contain the universal cur-
rency symbol ‘¤’, nor such notable currency symbols as $, ¢, £, P, and ¥.
(Luckily, in this case, you can use the currency property, \p{Sc}, in its place.)

• Blocks often have unrelated characters in them. For example, ¥ (Yen symbol)
is found in the LatinR1RSupplement block.

• What might be considered one script may be included within multiple blocks.
For example, characters used in Greek can be found in both the Greek and
GreekRExtended blocks.

Support for block qualities is more common than for script qualities. There is
ample room for getting the two confused because there is a lot of overlap in the
naming (for example, Unicode provides for both a Tibetan script and a Tibetan
block).

Further more, as Table 3-10 on the facing page shows, the nomenclature has not
yet been standardized. With Perl and java.util.regex, the Tibetan block is
!\p{InTibetan} ", but in the .NET Framework, it’s !\p{IsTibetan} " (which, to add
to the confusion, Perl allows as an alternate repr esentation for the Tibetan script).

29 April 2003 09:19

Other proper ties/qualities. Not everything talked about so far is universally
supported. Table 3-10 gives a few details about what’s been covered so far.

Additionally, Unicode defines many other qualities that might be accessible via the
!\p{˙˙˙}" construct, including ones related to how a character is written (left-to-right,
right-to-left, etc.), vowel sounds associated with characters, and more. Some
implementations even allow you to create your own properties on the fly. See
your program’s documentation for details on what’s supported.

Table 3-10: Pr operty/Script/Block Featur es

Feature Perl Java .NET

3 Basic Properties like \p{L} 3 3 3

3 Basic Properties shorthand like \pL 3 3

Basic Properties longhand like \p{IsL} 3 3

3 Basic Properties full like \p{Letter} 3

3 Composite \p{L&} 3

3 Script like \p{Greek} 3

Script longhand like \p{IsGreek} 3

3 Block like \p{Cyrillic} if no script 3

3 Block longhand like \p{InCyrillic} 3 3

Block longhand like \p{IsCyrillic} 3

3 Negated \P{˙˙˙} 3 3 3

Negated \p{ˆ˙˙˙} 3

3 \p{Any} 3 as \p{all}
3 \p{Assigned} 3 as \P{Cn} as \P{Cn}
3 \p{Unassigned} 3 as \p{Cn} as \p{Cn}

Lefthand checkmarks are recommended for new implementations. (See page 91 for version information)

Class set operations: [[a-z]&&[ˆaeiou]]

Sun’s Java regex package supports set operations within character classes. For
example, you can match all non-vowel English letters with “[a-z] minus
[aeiou]”. The nomenclature for this may seem a bit odd at first — it’s written as
[[a-z]&&[ˆaeiou]], and read aloud as “this and not that.” Befor e looking at that
in more detail, let’s look at the two basic class set operations, OR and AND.

OR allows you to add characters to the class by including what looks like an
embedded class within the class: [abcxyz] can also be written as [[abc][xyz]],
[abc[xyz]], or [[abc]xyz], among others. OR combines sets, creating a new set
that is the sum of the argument sets. Conceptually, it’s similar to the “bitwise or”
operator that many languages have via a ‘;’ or ‘or’ operator. In character classes,
OR is mostly a notational convenience, although the ability to include negated
classes can be useful in some situations.

Common Metacharacter s and Features 123

29 April 2003 09:19

124 Chapter 3: Over view of Regular Expression Features and Flavors

AND does a conceptual “bitwise AND” of two sets, keeping only those characters
found in both sets. It is achieved by inserting the special class metasequence &&

between two sets of characters. For example, [\p{InThai}&&\P{Cn}] matches all
assigned code points in the Thai block. It does this by taking the intersection
between (i.e., keeping only characters in both) \p{InThai} and \P{Cn}. Remem-
ber, \P{˙˙˙} with a capital ‘P’, matches everything not part of the quality, so \P{Cn}

matches everything not un assigned, which in other words, means is assigned.
(Had Sun supported the Assigned quality, I could have used \p{Assigned}

instead of \P{Cn} in this example.)

Be careful not to confuse OR and AND. How intuitive these names feel depends on
your point of view. For example, [[this][that]] in normally read “accept char-
acters that match [this] or [that],” yet it is equally true if read “the list of char-
acters to allow is [this] and [that].” Two points of view for the same thing.

AND is less confusing in that [\p{InThai}&&\P{Cn}] is normally read as “match
only characters matchable by \p{InThai} and \P{Cn},” although it is sometimes
read as “the list of allowed characters is the intersection of \p{InThai} and
\P{Cn}.”

These differing points of view can make talking about this confusing: what I call
OR and AND, some might choose to call AND and INTERSECTION.

Class subtraction. Thinking further about the [\p{InThai}&&\P{Cn}] example,
it’s useful to realize that \P{Cn} is the same as [ˆ\p{Cn}], so the whole thing can
be rewritten as the somewhat more complex looking [\p{InThai}&&[ˆ\p{Cn}]].
Further more, matching “assigned characters in the Thai block” is the same as
“characters in the Thai block, minus unassigned characters.” The double negative
makes it a bit confusing, but it shows that [\p{InThai}&&[ˆ\p{Cn}]] means
“\p{InThai} minus \p{Cn}.”

This brings us back to the ![[a-z]&&[ˆaeiou]]" example from the start of the sec-
tion, and shows how to do class subtraction. The pattern is that ![this &&[ˆthat]]"

means “[this] minus [that].” I find that the double negatives of && and [ˆ˙˙˙] tend
to make my head swim, so I just remember the ![˙˙˙ &&[ˆ˙˙˙]]" patter n.

Mimicking class set operations with lookaround. If your program doesn’t
support class set operations, but does support lookaround (+ 132), you can mimic
the set operations. With lookahead, ![\p{InThai}&&[ˆ\p{Cn}]]" can be rewritten
as !(?!\p{Cn})\p{InThai} ".† Although not as efficient as well-implemented class

† Actually, in Perl, this particular example could probably be written simply as !\p{Thai}", since in Perl
\p{Thai} is a script, which never contains unassigned characters. Other differ ences between the
Thai script and block are subtle. It’s beneficial to have the documentation as to what is actually cov-
er ed by any particular script or block. In this case, the script is actually missing a few special charac-
ters that are in the block.

29 April 2003 09:19

set operations, using lookaround can be quite flexible. This example can be
written four differ ent ways (substituting IsThai for InThai in .NET + 123):

(?!\p{Cn})\p{InThai}
(?=\P{Cn})\p{InThai}
\p{InThai}(?<!\p{Cn})
\p{InThai}(?<=\P{Cn})

Unicode combining character sequence: \X

Perl supports !\X " as a shorthand for !\P{M}\p{M}+ ", which is like an extended ! ."

(dot). It matches a base character (anything not !\p{M} ", followed by any number
(including none) of combining characters (anything that is !\p{M} ").

As discussed earlier (+ 107), Unicode uses a system of base and combining char-
acters which, in combination, create what look like single, accented characters like
à (‘a’ U+0061 combined with the grave accent ‘`’ U+0300). You can use more than
one combining character if that’s what you need to create the final result. For
example, if for some reason you need ‘ç̆’, that would be ‘c’ followed by a combin-
ing cedilla ‘¸’ and a combining breve ‘˘’ (U+0063 followed by U+0327 and U+0306).

If you wanted to match either “francais” or “français,” it wouldn’t be safe to just use
!fran.ais " or !fran[cç]ais ", as those assume that the ‘ç’ is render ed with the sin-
gle Unicode code point U+00C7, rather than ‘c’ followed by the cedilla (U+0063 fol-
lowed by U+0327). You could perhaps use !fran(c¸?;ç)ais " if you needed to be
very specific, but in this case, !fran\Xais " is a good substitute for !fran.ais ".

Besides the fact that !\X " matches trailing combining characters, there are two dif-
fer ences between it and dot. One is that !\X " always matches a newline and other
Unicode line terminators (+ 108), while dot is subject to dot-matches-all match-
mode (+ 110), and perhaps other match modes depending on the tool. Another
dif ference is that a dot-matches-all dot is guaranteed to match all characters at all
times, while !\X " doesn’t match a leading combining character.

POSIX bracket-expression “character class”: [[:alpha:]]

What we normally call a character class, the POSIX standard calls a bracket expres-
sion. POSIX uses the term “character class” for a special feature used within a
bracket expression† that we might consider to be the precursor to Unicode’s char-
acter properties.

A POSIX character class is one of several special metasequences for use within a
POSIX bracket expression. An example is [:lower:], which repr esents any lower-
case letter within the current locale (+ 87). For English text, [:lower:] is

† In general, this book uses “character class” and “POSIX bracket expression” as synonyms to refer to
the entire construct, while “POSIX character class” refers to the special range-like class feature
described here.

Common Metacharacter s and Features 125

29 April 2003 09:19

126 Chapter 3: Over view of Regular Expression Features and Flavors

comparable to a-z. Since this entire sequence is valid only within a bracket
expr ession, the full class comparable to ![a-z]" is ![[:lower:]]". Yes, it’s that ugly.
But, it has the advantage over ![a-z] " of including other characters, such as ö, ñ,
and the like if the locale actually indicates that they are “lowercase letters.”

The exact list of POSIX character classes is locale dependent, but the following are
usually supported:

[:alnum:] alphabetic characters and numeric character
[:alpha:] alphabetic characters
[:blank:] space and tab
[:cntrl:] contr ol characters
[:digit:] digits
[:graph:] non-blank characters (not spaces, control characters, or the like)
[:lower:] lowercase alphabetics
[:print:] like [:graph:], but includes the space character
[:punct:] punctuation characters
[:space:] all whitespace characters ([:blank:], newline, carriage retur n, and the like)
[:upper:] uppercase alphabetics
[:xdigit:] digits allowed in a hexadecimal number (i.e., 0-9a-fA-F).

Systems that support Unicode properties (+ 119) may or may not extend that Uni-
code support to these POSIX constructs. The Unicode property constructs are mor e
power ful, so those should generally be used if available.

POSIX bracket-expression “collating sequences”: [[.span-ll.]]

A locale can have collating sequences to describe how certain characters or sets of
characters should be ordered. For example, in Spanish, the two characters ll (as
in tortilla) traditionally sort as if it were one logical character between l and m,
and the German ß is a character that falls between s and t, but sorts as if it were
the two characters ss. These rules might be manifested in collating sequences
named, for example, span-ll and eszet.

A collating sequence that maps multiple physical characters to a single logical
character, such as the span-ll example, is considered “one character” to a fully
compliant POSIX regex engine. This means that something like ![ˆabc] " matches
the ‘ll’ sequence.

A collating sequence element is included within a bracket expression using a
[.˙˙˙.] notation: !torti[[.span-ll.]]a " matches tortilla. A collating sequence
allows you to match against those characters that are made up of combinations of
other characters. It also creates a situation where a bracket expression can match
mor e than one physical character.

POSIX bracket-expression “character equivalents”: [[=n=]]

Some locales define character equivalents to indicate that certain characters should
be considered identical for sorting and such. For example, a locale might define

29 April 2003 09:19

an equivalence class ‘n’ as containing n and ñ, or perhaps one named ‘a’ as con-
taining a, à, and á. Using a notation similar to [:˙˙˙:], but with ‘=’ instead of a
colon, you can refer ence these equivalence classes within a bracket expression:
![[=n=][=a=]]" matches any of the characters just mentioned.

If a character equivalence with a single-letter name is used but not defined in the
locale, it defaults to the collating sequence of the same name. Locales normally
include normal characters as collating sequences — [.a.], [.b.], [.c.], and so
on—so in the absence of special equivalents, ![[=n=][=a=]]" defaults to ![na]".

Emacs syntax classes

GNU Emacs doesn’t support the traditional !\w ", !\s ", etc.; rather, it uses special
sequences to refer ence “syntax classes”:

\schar matches characters in the Emacs syntax class as described by char

\Schar matches characters not in the Emacs syntax class

!\sw " matches a “word constituent” character, and !\s- " matches a “whitespace char-
acter.” These would be written as !\w " and !\s " in many other systems.

Emacs is special because the choice of which characters fall into these classes can
be modified on the fly, so, for example, the concept of which characters are word
constituents can be changed depending upon the kind of text being edited.

Anchor s and Other “Zero-Width Assertions”
Anchors and other “zero-width assertions” don’t match actual text, but rather posi-
tions in the text.

Star t of line/string: ˆ, \A

Car et !ˆ " matches at the beginning of the text being searched, and, if in an
enhanced line-anchor match mode (+ 111), after any newline. In some systems,
an enhanced-mode !ˆ " can match after Unicode line terminators, as well (+ 108).

When supported, !\A " always matches only at the start of the text being searched,
regardless of any match mode.

End of line/string: $, \Z, \z

As Table 3-11 on the next page shows, the concept of “end of line” can be a bit
mor e complex than its start-of-line counterpart. !$ " has a variety of meanings
among differ ent tools, but the most common meaning is that it matches at the end
of the target string, and before a string-ending newline, as well. The latter is com-
mon, to allow an expression like !s$ " (ostensibly, to match “a line ending with s”)
to match ‘˙˙˙s1’, a line ending with s that’s capped with an ending newline.

Common Metacharacter s and Features 127

29 April 2003 09:19

128 Chapter 3: Over view of Regular Expression Features and Flavors

Two other common meanings for !$ " ar e to match only at the end of the target text,
and to match after any newline. In some Unicode systems, the special meaning of
newline in these rules are replaced by Unicode line terminators (+ 108).

A match mode (+ 111) can change the meaning of !$ " to match before any embed-
ded newline (or Unicode line terminator as well).

When supported, !\Z " usually matches what the “unmoded” !$ " matches, which
often means to match at the end of the string, or before a string-ending newline.
To complement these, !\z " matches only at the end of the string, period, without
regard to any newline. See Table 3-11 for a few exceptions.

Table 3-11: Line Anchors for Some Scripting Languages

Concer n Ja va Perl PHP Python Ruby Tcl .NET

Nor mally . . .

ˆ matches at start of string 3 3 3 3 3 3 3

ˆ matches after any newline 32

$ matches at end of string 3 3 3 3 3 3 3

$ matches before string-ending newline 31 3 3 3 3 3

$ matches before any newline 32

Has enhanced line-anchor mode (+111) 3 3 3 3 3 3

In enhanced line-anchor mode . . .

ˆ matches at start of string 3 3 3 3 N/A 3 3

ˆ matches after any newline 31 3 3 3 N/A 3 3

$ matches at end of string 3 3 3 3 N/A 3 3

$ matches before any newline 31 3 3 3 N/A 3 3

\A always matches like normal ˆ 3 3 3 3 •4 3 3

\Z always matches like normal $ 31 3 3 •3 •5 3 3

\z always matches only at end of string 3 3 3 N/A N/A 3 3

Notes: 1. Sun’s Java regex package supports Unicode’s line terminator (+ 108) in these cases.

2. Ruby’s $ and ˆ match at embedded newlines, but its \A and \Z do not.

3. Python’s \Z matches only at the end of the string.

4. Ruby’s \A, unlike its ˆ, matches only at the start of the string.

5. Ruby’s \Z, unlike its $, matches at the end of the string, or before a string-ending newline.

(See page 91 for version information.)

Star t of match (or end of previous match): \G

!\G " was first introduced by Perl to be useful when doing iterative matching with /g

(+ 51), and ostensibly matches the location where the previous match left off. On
the first iteration, !\G " matches only at the beginning of the string, just like !\A ".

29 April 2003 09:19

If a match is not successful, the location at which !\G " matches is reset back to the
beginning of the string. Thus, when a regex is applied repeatedly, as with Perl’s
!s/˙˙˙/˙˙˙/g " or other’s “match all” function, the failure that causes the “match all” to
fail also resets the location for !\G " for the next time a match of some sort is
applied.

Perl’s !\G " has three unique aspects that I find quite interesting and useful:

• The location associated with !\G " is an attribute of each target string, not of the
regexes that are setting that location. This means that multiple regexes can
match against a string, in turn, each using !\G " to ensure that they pick up
exactly where one of the others left off.

• Perl’s regex operators have an option (Perl’s /c modifier + 315) that indicates
a failing match should not reset the !\G " location, but rather to leave it where it
was. This works well with the first point to allow tests with a variety of
expr essions to be perfor med at one point in the target string, advancing only
when there’s a match.

• That location associated with !\G " can be inspected and modified by non-regex
constructs (Perl’s pos function + 313). One might want to explicitly set the
location to “prime” a match to start at a particular location, and match only at
that location. Also, if the language supports this point, the functionality of the
pr evious point can be mimicked with this feature, if it’s not already supported
dir ectly.

See the sidebar on the next page for an example of these features in action.
Despite these convenient features, Perl’s !\G " does have a problem in that it works
reliably only when it’s the first thing in the regex. Luckily, that’s where it’s most-
naturally used.

End of previous match, or start of the current match?
One detail that differs among implementations is whether !\G " actually matches the
“start of the current match” or “end of the previous match.” In the vast majority of
cases, the two meanings are the same, so it’s a non-issue most of the time.
Uncommonly, they can differ. Ther e is a realistic example of how this might arise
on page 215, but the issue is easiest to understand with a contrived example:
consider applying !x? " to ‘abcde’. The regex can match successfully at ‘abcde’, but
doesn’t actually match any text. In a global search-and-r eplace situation, where the
regex is applied repeatedly, picking up each time from where it left off, unless the
transmission does something special, the “where it left off” will always be the
same as where it started. To avoid an infinite loop, the transmission forcefully
bumps along to the next character (+ 148) when it recognizes this situation. You
can see this by applying s/x?/!/g to ‘abcde’, yielding ‘!a!b!c!d!e!’.

Common Metacharacter s and Features 129

29 April 2003 09:19

130 Chapter 3: Over view of Regular Expression Features and Flavors

Advanced Use of \G with Perl
Her e’s the outline of a snippet that perfor ms simple validation on the HTML
in the variable $html, ensuring that it contains constructs from among only a
very limited subset of HTML (simple and <A> tags are allowed, as well
as simple entities like >). I’ve used this method at Yahoo!, for example, to
validate that a user’s HTML submission met certain guidelines.

This code relies heavily on the behavior of Perl’s m/˙˙˙/gc match operator,
which applies the regular expression to the target string once, picking up
fr om wher e the last successful match left off, but not resetting that position if
it fails (+ 315).

Using this feature, the various expressions used below all “tag team” to work
their way through the string. It’s similar in theory to having one big alterna-
tion with all the expressions, but this approach allows program code to be
executed with each match, and to include or exclude expressions on the fly.

my $needRcloseRanchor = 0; # True if we’ve seen <A>, but not its closing .

while (not $html =˜ m/\G\z/gc) # While we haven’t worked our way to the end . . .
{

if ($html =˜ m/\G(\w+)/gc) {
. . . have a word or number in $1 -- can now check for profanity, for example . . .

} elsif ($html =˜ m/\G[ˆ<>&\w]+/gc) {
Other non-HTML stuff -- simply allow it.

} elsif ($html =˜ m/\G<img\s+([ˆ>]+)>/gci) {
. . . have an image tag -- can check that it’s appropriate . . .

+
+
+

} elsif (not $needRcloseRanchor and $html =˜ m/\G<A\s+([ˆ>]+)>/gci) {
. . . have a link anchor — can validate it . . .

+
+
+

$needRcloseRanchor = 1; # Note that we now need
} elsif ($needRcloseRanchor and $html =˜ m{\G}gci){
$needRcloseRanchor = 0; # Got what we needed; don’t allow again

} elsif ($html =˜ m/\G&(#\d+<\w+);/gc){
Allow entities like > and {

} else {
Nothing matched at this point, so it must be an error. Note the locationn, and grab a dozen or so
characters from the HTML so that we can issue an informative error message.
my $location = pos($html); # Note where the unexpected HTML starts.
my ($badstuff) = $html =˜ m/\G(.{1,12})/;
die "Unexpected HTML at position $location: $badstuff\n";

}
}

Make sure ther e’s no dangling <A>
if ($needRcloseRanchor) {

die "Missing final "
}

29 April 2003 09:19

One side effect of the transmission having to step in this way is that the “end of
the previous match” then differs from “the start of the current match.” When this
happens, the question becomes: which of the two locations does !\G " match? In
Perl, actually applying s/\Gx?/!/g to ‘abcde’ yields just ‘!abcde’, so in Perl, !\G "

really does match only the end of the previous match. If the transmission does the
artificial bump-along, Perl’s !\G " is guaranteed to fail.

On the other hand, applying the same search-and-r eplace with some other tools
yields the original ‘!a!b!c!d!e!’, showing that their !\G " matches successfully at
the start of each current match, as decided after the artificial bump-along.

You can’t always rely on the documentation that comes with a tool to tell you
which is which, as I’ve found that both Microsoft’s .NET and Sun’s Java documen-
tation are incorr ect. My testing has shown that java.util.regex and Ruby have
!\G " match at the start of the current match, while Perl and the .NET languages have
it match at the end of the previous match. (Sun tells me that the next release of
java.util.regex will have its !\G " behavior match the documentation.)

Word boundar ies: \b, \B, \<, \>, ...

Like line anchors, word-boundary anchors match a location in the string. There are
two distinct approaches. One provides separate metasequences for start- and end-
of-wor d boundaries (often \< and \>), while the other provides ones catch-all
wor d boundary metasequence (often \b). Either generally provides a not-wor d-
boundary metasequence as well (often \B). Table 3-12 shows a few examples.
Tools that don’t provide separate start- and end-of-word anchors, but do support
lookar ound, can mimic word-boundary anchors with the lookaround. In the table,
I’ve filled in the otherwise empty spots that way, wherever practical.

A word boundary is generally defined as a location where ther e is a “word charac-
ter” on one side, and not on the other. Each tool has its own idea of what consti-
tutes a “word character,” as far as word boundaries go. It would make sense if the
word boundaries agree with \w, but that’s not always the case. With Sun’s Java
regex package, for example, \w applies only to ASCII and not the full Unicode that
Java supports, so in the table I’ve used lookaround with the Unicode letter prop-
erty \pL (which is a shorthand for !\p{L} " + 119).

Whatever the word boundaries consider to be “word characters,” word boundary
tests are always a simple test of adjoining characters. No regex engine actually
does linguistic analysis to decide about words: all consider “NE14AD8” to be a
word, but not “M.I.T.”

Common Metacharacter s and Features 131

29 April 2003 09:19

132 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-12: A Few Utilities and Their Wor d Boundary Metacharacters

Word Not word-
Program Star t-of-word . . . End-of-word boundar y boundar y

GNU egr ep \< . . . \> \b \B

GNU Emacs \< . . . \> \b \B

GNU awk \< . . . \> \y \B

MySQL [[:<:]] . . . [[:>:]] [[:<:]]<[[:>:]]

Perl (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

PHP (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

Python (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

Ruby \b \B

GNU sed \< . . . \> \b \B

Java (?<!\pL)(?=\pL) . . . (?<=\pL)(?!\pL) \b \B

Tcl \y \Y\m . . . \M

.NET (?<!\w)(?=\w) . . . (?<=\w)(?!\w) \b \B

Lookahead (?=˙˙˙), (?!˙˙˙); Lookbehind, (?<=˙˙˙), (?<!˙˙˙)

Lookahead and lookbehind constructs (collectively, lookar ound) are discussed
with an extended example in the previous chapter’s “Adding Commas to a Num-
ber with Lookaround” (+ 59). One important issue not discussed there relates to
what kind of expression can appear within either of the lookbehind constructs.
Most implementations have restrictions about the length of text matchable within
lookbehind (but not within lookahead, which is unrestricted).

The most restrictive rule exists in Perl and Python, where the lookbehind can
match only fixed-length strings. For example, (?<!\w) and (?<!this<that) ar e
allowed, but (?<!books?) and (?<!ˆ\w+:) ar e not, as they can match a variable
amount of text. In some cases, such as with (?<!books?), you can accomplish
the same thing by rewriting the expression, as with !(?<!book)(?<!books) ",
although that’s certainly not easy to read at first glance.

The next level of support allows alternatives of differ ent lengths within the look-
behind, so (?<!books?) can be written as (?<!book<books). PCRE (and the
pcre routines in PHP) allows this.

The next level allows for regular expressions that match a variable amount of text,
but only if it’s of a finite length. This allows (?<!books?) dir ectly, but still dis-
allows (?<!ˆ\w+:) since the \w+ is open-ended. Sun’s Java regex package sup-
ports this level.

29 April 2003 09:19

When it comes down to it, these first three levels of support are really equivalent,
since they can all be expressed, although perhaps somewhat clumsily, with the
most restrictive fixed-length matching level of support. The intermediate levels are
just “syntactic sugar” to allow you to express the same thing in a more pleasing
way. The fourth level, however, allows the subexpression within lookbehind to
match any amount of text, including the (?<!ˆ\w+:) example. This level, sup-
ported by Microsoft’s .NET languages, is truly superior to the others, but does carry
a potentially huge efficiency penalty if used unwisely. (When faced with look-
behind that can match any amount of text, the engine is forced to check the look-
behind subexpression from the start of the string, which may mean a lot of wasted
ef fort when requested from near the end of a long string.)

Comments and Mode Modifier s
With many flavors, the regex modes and match modes described earlier (+ 109)
can be modified within the regex (on the fly, so to speak) by the following
constructs.

Mode modifier: (?modifier), such as (?i) or (?-i)

Many flavors now allow some of the regex and match modes (+ 109) to be set
within the regular expression itself. A common example is the special notation
!(?i) ", which turns on case-insensitive matching, and !(?-i) ", which turns it off. For
example, !(?i)very(?-i) " has the !very " part match with case insensitiv-
ity, while still keeping the tag names case-sensitive. This matches ‘VERY’
and ‘Very’, for example, but not ‘Very’.

This example works with most systems that support !(?i) ", including Perl,
java.util.regex, Ruby, and the .NET languages. But, some systems have differ-
ent semantics. With Python, for example, the appearance of !(?i) " anywher e in the
regex turns on case-insensitive matching for the entire regex, and Python doesn’t
support turning it off with !(?-i) ". Tcl’s case-insensitive matching is also all-or-
nothing, but Tcl requir es the !(?i)" to be at the beginning of the regex — anywher e
else is an error. Ruby has a bug whereby sometimes !(?i) " doesn’t apply to !;"-sepa-
rated alternatives that are lowercase (but does if they’re uppercase). PHP has the
special case that if !(?i) " is used outside of all parentheses, it applies to the entire
regex. So, in PHP, we’d have to write our example with an extra set of “constrain-
ing” parentheses: !(?:(?i)very(?-i)) ".

Actually, that last PHP example can be simplified a bit because with many imple-
mentations (including PHP’s), when !(?i) " is used within any type of parentheses,
its effects are limited by the parentheses (i.e., turn off at the closing parentheses).
So, the !(?-i) " can simply be eliminated: !(?:(?i)very) ".

Common Metacharacter s and Features 133

29 April 2003 09:19

134 Chapter 3: Over view of Regular Expression Features and Flavors

The mode-modifier constructs support more than just ‘i’. With most systems, you
can use at least those shown in Table 3-13.

Table 3-13: Common Mode Modifiers

Letter Mode

i case-insensitivity match mode (+109)

x free-spacing and comments regex mode (+110)

s dot-matches-all match mode (+110)

m enhanced line-anchor match mode (+111)

Some systems have additional letters for additional functions. Tcl has a number of
dif ferent letters for turning its various modes on and off — see its documentation
for the complete list.

Mode-modified span: (?modifier:˙˙˙), such as (?i:˙˙˙)

The example from the previous section can be made even simpler for systems that
support a mode-modified span. Using a syntax like !(?i:˙˙˙)", a mode-modified
span turns on the mode only for what’s matched within the parentheses. Using
this, the !(?:(?i)very)" example is simplified to !(?i:very) ".

When supported, this form generally works for all mode-modifier letters the sys-
tem supports. Tcl and Python are two examples that support the !(?i) " for m, but
not the mode-modified span !(?i:˙˙˙)" for m.

Comments: (?#˙˙˙) and #˙˙˙

Some flavors support comments via !(?#˙˙˙)". In practice, this is rarely used, in favor
of the free-spacing and comments regex mode (+ 110). However, this type of
comment is particularly useful in languages for which it’s difficult to get a newline
into a string literal, such as VB.NET (+ 99, 414).

Literal-text span: \Q˙˙˙\E

First introduced with Perl, the special sequence \Q˙˙˙\E tur ns of f all regex meta-
characters between them, except for \E itself. (If the \E is omitted, they are tur ned
of f until the end of the regex.) It allows what would otherwise be taken as normal
metacharacters to be treated as literal text. This is especially useful when including
the contents of a variable while building a regular expression.

For example, to respond to a web search, you might accept what the user types as
$query, and search for it with m/$query/i. As it is, this would certainly have
unexpected results if $query wer e to contain, say, ‘C:\WINDOWS\’, which results in

29 April 2003 09:19

a run-time error because the search term contains something that isn’t a valid regu-
lar expression (the trailing lone backslash). To get around this, you could use
m/\Q$query\E/i, which effectively turns ‘C:\WINDOWS\’ into ‘C:\\WINDOWS\\’,
resulting in a search that finds ‘C:\WINDOWS\’ as the user expects.

This kind of feature is less useful in systems with procedural and object-oriented
handling (+ 95), as they accept normal strings. While building the string to be
used as a regular expression, it’s fairly easy to call a function to make the value
fr om the variable “safe” for use in a regular expression. In VB, for example, one
would use the Regex.Escape method.

Curr ently, the only regex engine I know of that fully supports !\Q˙˙˙\E " is Sun’s
java.util.regex engine. Considering that I just mentioned that this was intro-
duced with Perl (and I gave an example in Perl), you might wonder why I don’t
include Perl in that statement. Perl supports \Q˙˙˙\E within regex literals (r egular
expr essions typed directly in the program), but not within the contents of variables
that might be interpolated into them. See Chapter 7 (+ 290) for details.

Grouping, Capturing, Conditionals, and Control
Captur ing/Grouping Parentheses: (˙˙˙) and \1, \2, ...

Common, unadorned parentheses generally perfor m two functions, grouping and
capturing. Common parentheses are almost always of the form !(˙˙˙)", but a few fla-
vors use !\(˙˙˙\) ". These include GNU Emacs, sed, vi, and gr ep.

Capturing parentheses are number ed by counting their opening parentheses from
the left, as shown in figures on pages 41, 43, and 57. If backr efer ences ar e avail-
able, the text matched via an enclosed subexpression can itself be matched later in
the same regular expression with !\1 ", !\2 ", etc.

One of the most common uses of parentheses is to pluck data from a string. The
text matched by a parenthesized subexpression (also called “the text matched by
the parentheses”) is made available after the match in differ ent ways by differ ent
pr ograms, such as Perl’s $1, $2, etc. (A common mistake is to try to use the !\1 "

syntax outside the regular expression; something allowed only with sed and vi.)

Table 3-14 on the next page shows how a number of programs make the captured
text available after a match. It shows how to access the text matched by the whole
expr ession, and the text matched by a set of capturing parentheses.

Common Metacharacter s and Features 135

29 April 2003 09:19

136 Chapter 3: Over view of Regular Expression Features and Flavors

Table 3-14: A Few Utilities and Their Access to Captured Text

Program Entire match Fir st set of parentheses

GNU egr ep N/A N/A

GNU Emacs (match-string 0)

(\& within replacement string)

(match-string 1)

(\1 within replacement string)

GNU awk \1 (within gensub replacement)substr($text, RSTART, RLENGTH)

(\& within replacement string)

MySQL N/A N/A

Perl $& $1+ 41

PHP $Matches[0] $Matches[1]

Python MatchObj.group(0) MatchObj.group(1)+ 97

Ruby $& $1

GNU sed & (in replacement string only) \1 (in replacement and regex only)

Java MatcherObj.group() MatcherObj.group(1)+ 95

Tcl set to user-selected variables via regexp command

VB.NET MatchObj.Groups(0) MatchObj.Groups(1)+ 96

C# MatchObj.Groups[0] MatchObj.Groups[1]

vi & \1

(See page 91 for version information.)

Grouping-only parentheses: (?:˙˙˙)

Now supported by many common flavors, grouping-only parentheses !(?:˙˙˙)" don’t
captur e, but just group regex components for alternation and the application of
quantifiers. Grouping-only parentheses are not counted as part of $1, $2, etc. After
a successful match of !(1;one)(?:and;or)(2;two) ", for example, $1 contains ‘1’
or ‘one’, while $2 contains ‘2’ or ‘two’. Grouping-only parentheses are also called
non-capturing par entheses.

Non-capturing parentheses are useful for a number of reasons. They can help
make the use of a complex regex more clear in that the reader doesn’t need to
wonder if what’s matched by what they group is accessed elsewhere by $1 or the
like. They can also be more efficient — if the regex engine doesn’t need to keep
track of the text matched for capturing purposes, it can work faster and use less
memory. (Efficiency is covered in detail in Chapter 6.)

Non-capturing parentheses are useful when building up a regex from parts. Recall
the example from page 76, where the variable $HostnameRegex holds a regex to
match a hostname. Imagine now using that to pluck out the whitespace around a
hostname, as in the Perl snippet m/(\s+)$HostnameRegex(\s+)/. After this, you

29 April 2003 09:19

might expect $1 to hold any leading whitespace, and $2 to hold trailing white-
space, but that’s not the case: the trailing whitespace is actually in $4 because the
definition of $HostnameRegex uses two sets of capturing par entheses:

$HostnameRegex = qr/[-a-z0-9]+(\.[-a-z0-9]+)+\.(com;edu;info)/i;

Were those sets of parentheses non-capturing instead, $HostnameRegex could be
used without generating this surprise:

$HostnameRegex = qr/[-a-z0-9]+(?:\.[-a-z0-9]+)+\.(?:com;edu;info)/i;

Another way to avoid the surprise, although not available in Perl, is to use named
captur e, discussed next.

Named capture: (?<Name>˙˙˙)

Python and .NET languages support captures to named locations. Python uses the
syntax !(?P<name>˙˙˙)", while the .NET languages offer a syntax that I prefer,
!(?<name>˙˙˙)". Her e’s an example:

!\b(?<Area>\d\d\d\)-(?<Exch>\d\d\d)-(?<Num>\d\d\d\d)\b "

This “fills the names” Ar ea, Exch, and Num with the components of a phone num-
ber. The program can then refer to each matched substring through its name, for
example, RegexObj.Groups("Area") in VB.NET and most other .NET languages,
RegexObj.Groups["Area"] in C#, and RegexObj.group("Area") in Python. The
result is clearer code.

Within the regular expression itself, the captured text is available via !\k<Area> "

with .NET, and !(?P=Area) " in Python.

You can use the same name more than once within the same expression. For
example, to match an area code that looks like ‘(###)’ as well as ‘###-’, you might
use ! ˙˙˙(?:\((?<Area>\d\d\d) \)<(?<Area>\d\d\d)-)˙˙˙ ". When either matches,
the three-digit code is saved to the name Ar ea.

Atomic grouping: (?>˙˙˙)

Atomic grouping, !(?>˙˙˙)", will be very easy to explain once the important details
of how the regex engine carries out its work is understood (+ 169). Here, I’ll just
say that once the parenthesized subexpression matches, what it matches is fixed
(becomes atomic, unchangeable) for the rest of the match, unless it turns out that
the whole set of atomic parentheses needs to be abandoned or revisited. A simple
example helps to illustrate this indivisible, “atomic” nature of text matched by
these parentheses.

The regex !¡.+!" matches ‘¡Hola!’, but that string is not matched if the ! .+ " is
wrapped with atomic grouping, !¡(?>.+)!". In either case, the ! .+ " first internally
matches as much as it can (‘¡Hola!’), but in the first case, the ending !!" forces the

Common Metacharacter s and Features 137

29 April 2003 09:19

138 Chapter 3: Over view of Regular Expression Features and Flavors

! .+ " to give up some of what it had matched (the final ‘!’) to complete the overall
match. In the second case, the ! .+ " is inside atomic grouping (which never “give
up” anything once the matching leaves them), so nothing is left for the final !!", and
it can never match.

This example gives no hint to the usefulness of atomic grouping, but atomic
gr ouping has important uses. In particular, they can help make matching more
ef ficient (+ 171), and can be used to finely control what can and can’t be matched
(+ 269).

Alter nation: ˙˙˙<˙˙˙<˙˙˙

Alter nation allows several subexpressions to be tested at a given point. Each
subexpr ession is called an alter native. The !;" symbol is called various things, but
or and bar seem popular. Some flavors use !\;" instead.

Alter nation is a high-level construct (one that has very low precedence) in almost
all regex flavors. This means that !this and;or that " has the same meaning as
!(this and);(or that) ", and not !this (and;or) that ", even though visually,
the and;or looks like a unit.

Most flavors allow an empty alternative, like with !(this;that;)". The empty
subexpr ession means to always match, so this example is logically comparable to
!(this;that)? ".† The POSIX standard disallows an empty alternative, as does lex
and most versions of awk. I think it’s useful for its notational convenience or clar-
ity. As Larry Wall explained to me once, “It’s like having a zero in your numbering
system.”

Conditional: (? if then |else)

This construct allows you to express an if/then/else within a regex. The if part is a
special kind of conditional expression discussed in a moment. Both the then and
else parts are nor mal regex subexpressions. If the if part tests true, the then
expr ession is attempted. Otherwise, the else part is attempted. (The else part may
be omitted, and if so, the ‘;’ befor e it may be omitted as well.)

The kinds of if tests available are flavor-dependent, but most implementations
allow at least special refer ences to capturing subexpressions and lookaround.

† Actually, to be pedantic, !(this;that;)" is logically comparable to !((?:this;that)?)". With either of
these, the subexpression within the capturing parentheses is always able to match (although it may
match nothingness, but that’s the whole point of the empty alternative or the question mark quanti-
fier). On the other hand, with !(this;that)? ", it may be that the whole set of capturing parentheses
does not match. The differ ence may seem minor, but some languages provide a way to find out if a
certain set of capturing parentheses participated in the match, and with !(this;that;)" the answer is
always yes, but with !(this;that)? ", the answer could be no.

29 April 2003 09:19

Using a special reference to capturing parentheses as the test. If the if part is a
number in parentheses, it evaluates to “true” if that numbered set of capturing
par entheses has participated in the match to this point. Here’s an example that
matches an HTML tag, either alone, or surrounded by <A>˙˙˙ link tags.
It’s shown in a free-spacing mode with comments, and the conditional construct
(which in this example has no else part) is bold:

(<A\s+[ˆ>]+> \s+)? # Match leading <A> tag, if there.
<IMG\s+[ˆ>]+> # Match tag.
(?(1)\s+) # Match a closing , if we’d matched an <A> before.

The (1) in !(?(1)˙˙˙)" tests whether the first set of capturing parentheses partici-
pated in the match. “Participating in the match” is very differ ent fr om “actually
matched some text,” as a simple example illustrates...

Consider these two approaches to matching a word optionally wrapped in “<˙˙˙>”:
!(<)?\w+(?(1)>)" works, but !(<?)\w+(?(1)>)" does not. The only differ ence
between them is the location of the first question mark. In the first (correct)
appr oach, the question mark governs the capturing parentheses, so the parenthe-
ses (and all they contain) are optional. In the flawed second approach, the captur-
ing parentheses are not optional — only the !<" matched within them is, so they
“participate in the match” regardless of a ‘<’ being matched or not. This means that
the if part of !(?(1)˙˙˙)" always tests “true.”

If named capture (+ 137) is supported, you can generally use the name in paren-
theses instead of the number.

Using lookaround as the test. A full lookaround construct, such as !(?=˙˙˙)" and
!(?<=˙˙˙)", can be used as the if test. If the lookaround matches, it evaluates to
“true,” and so the then part is attempted. Otherwise, the else part is attempted. A
somewhat contrived example that illustrates this is !(?(?<=NUM:)\d+<\w+)", which
attempts !\d+ " at positions just after !NUM: ", but attempts !\w+ " at other positions. The
lookbehind conditional is underlined.

Other tests for the conditional. Perl adds an interesting twist to this conditional
construct by allowing arbitrary Perl code to be executed as the test. The retur n
value of the code is the test’s value, indicating whether the then or else part should
be attempted. This is covered in Chapter 7, on page 327.

Greedy quantifier s: ,, +, ?, {num,num}

The quantifiers (star, plus, question mark, and intervals—metacharacters that affect
the quantity of what they govern) have already been discussed extensively. How-
ever, note that in some tools, !\+ " and !\? " ar e used instead of !+ " and !? ". Also, with
some older tools, quantifiers can’t be applied to a backrefer ence or to a set of
par entheses.

Common Metacharacter s and Features 139

29 April 2003 09:19

140 Chapter 3: Over view of Regular Expression Features and Flavors

Inter vals—{min,max} or \{min,max\}
Intervals can be considered a “counting quantifier” because you specify exactly the
minimum number of matches you wish to requir e, and the maximum number of
matches you wish to allow. If only a single number is given (such as in ![a-z]{3} "

or ![a-z]\{3\} ", depending upon the flavor), it matches exactly that many of the
item. This example is the same as ![a-z][a-z][a-z] " (although one may be more
or less efficient than the other + 251).

One caution: don’t think you can use something like !X{0,0} " to mean “there must
not be an X her e.” !X{0,0} " is a meaningless expression because it means “ no
requir ement to match !X ", and, in fact, don’t even bother trying to match any.
Period. ” It’s the same as if the whole !X{0,0} " wasn’t there at all — if there is an X

pr esent, it could still be matched by something later in the expression, so your
intended purpose is defeated.† Use negative lookahead for a true “must not be
her e” construct.

Lazy quantifier s: ,?, +?, ??, {num,num}?

Some tools offer the rather ungainly looking +?, +?, ??, and {min,max}?. These are
the lazy versions of the quantifiers. (They are also called minimal matching, non-
gr eedy, and ungr eedy.) Quantifiers are nor mally “gr eedy,” and try to match as
much as possible. Conversely, these non-greedy versions match as little as possi-
ble, just the bare minimum needed to satisfy the match. The differ ence has far-
reaching implications, covered in detail in the next chapter (+ 159).

Possessive quantifier s: ,+, ++, ?+, {num,num}+

Curr ently supported only by java.util.regex, but likely to gain popularity, pos-
sessive quantifiers ar e like normally greedy quantifiers, but once they match some-
thing, they never “give it up.” Like the atomic grouping to which they’re related,
understanding possessive quantifiers is much easier once the underlying match
pr ocess is understood (which is the subject of the next chapter).

In one sense, possessive quantifiers are just syntactic sugar, as they can be mim-
icked with atomic grouping. Something like ! .++ " has exactly the same result as
!(?>.+)", although a smart implementation can optimize possessive quantifiers
mor e than atomic grouping (+ 250).

† In theory, what I say about {0,0} is correct. In practice, what actually happens is even worse — it’s
almost random! In many programs (including GNU awk, GNU gr ep, and older versions of Perl) it
seems that {0,0} means the same as +, while in many others (including most versions of sed that
I’ve seen, and some versions of gr ep) it means the same as ?. Crazy!

29 April 2003 09:19

Guide to the Advanced Chapters
Now that we’re familiar with metacharacters, flavors, syntactic packaging, and the
like, it’s time to start getting into the nitty-gritty details of the third concern raised
at the start of this chapter, the specifics of how a tool’s regex engine goes about
applying a regex to some text. In Chapter 4, The Mechanics of Expression Process-
ing, we see how the implementation of the match engine influences whether a
match is achieved, which text is matched, and how much time the whole thing
takes. We’ll look at all the details. As a byproduct of this knowledge, you’ll find it
much easier to craft complex expressions with confidence. Chapter 5, Practical
Regex Techniques helps to solidify that knowledge with extended examples.

That brings us to Chapter 6, Crafting an Efficient Expression. Once you know the
basics about how an engine works, you can learn techniques to take full advan-
tage of that knowledge. Chapter 6 looks at regex pitfalls that often lead to unwel-
come surprises, and turns the tables to put them to use for us.

Chapters 4, 5, and 6 are the central core of this book. These first three chapters
mer ely lead up to them, and the discussions in the tool-specific chapters that fol-
low rely on them. They’re not necessarily what you would call “light reading,” but
I’ve taken great care to stay away from math, algebra, and all that stuff that’s just
mumbo-jumbo to most of us. As with any large amount of new information, it
likely takes time to sink in and internalize.

Guide to the Advanced Chapters 141

29 April 2003 09:19

