
4
The Mechanics

of Expression
Processing

The previous chapter started with an analogy between cars and regular expres-
sions. The bulk of the chapter discussed features, regex flavors, and other “glossy
br ochure” issues of regular expressions. This chapter continues with that analogy,
talking about the all-important regular-expr ession engine, and how it goes about
its work.

Why would you care how it works? As we’ll see, there are several types of regex
engines, and the type most commonly used — the type used by Perl, Tcl, Python,
the .NET languages, Ruby, PHP, all Java packages I’ve seen, and more — works in
such a way that how you craft your expression can influence whether it can match
a particular string, wher e in the string it matches, and how quickly it finds the
match or reports the failure. If these issues are important to you, this chapter is
for you.

Star t Your Engines!
Let’s see how much I can milk this engine analogy. The whole point of having an
engine is so that you can get from Point A to Point B without doing much work.
The engine does the work for you so you can relax and enjoy the sound system.
The engine’s primary task is to turn the wheels, and how it does that isn’t really a
concer n of yours. Or is it?

143

29 April 2003 09:21

144 Chapter 4: The Mechanics of Expression Processing

Tw o Kinds of Engines
Well, what if you had an electric car? They’ve been around for a long time, but
they aren’t as common as gas cars because they’re hard to design well. If you had
one, though, you would have to remember not to put gas in it. If you had a gaso-
line engine, well, watch out for sparks! An electric engine more or less just runs,
but a gas engine might need some babysitting. You can get much better perfor-
mance just by changing little things like your spark plug gaps, air filter, or brand of
gas. Do it wrong and the engine’s perfor mance deteriorates, or, worse yet, it stalls.

Each engine might do its work differ ently, but the end result is that the wheels
tur n. You still have to steer properly if you want to get anywhere, but that’s an
entir ely dif ferent issue.

New Standards
Let’s stoke the fire by adding another variable: the California Emissions Standards.†

Some engines adhere to Califor nia’s strict pollution standards, and some engines
don’t. These aren’t really differ ent kinds of engines, just new variations on what’s
alr eady ar ound. The standard regulates a result of the engine’s work, the emis-
sions, but doesn’t say anything about how the engine should go about achieving
those cleaner results. So, our two classes of engine are divided into four types:
electric (adhering and non-adhering) and gasoline (adhering and non-adhering).

Come to think of it, I bet that an electric engine can qualify for the standard with-
out much change— the standard just “blesses” the clean results that are alr eady par
for the course. The gas engine, on the other hand, needs some major tweaking
and a bit of re-tooling before it can qualify. Owners of this kind of engine need to
pay particular care to what they feed it — use the wrong kind of gas and you’re in
big trouble.

The impact of standards

Better pollution standards are a good thing, but they requir e that the driver exer-
cise more thought and foresight (well, at least for gas engines). Frankly, however,
the standard doesn’t impact most people since all the other states still do their own
thing and don’t follow California’s standard.

So, you realize that these four types of engines can be classified into three groups
(the two kinds for gas, and electric in general). You know about the differ ences,
and that in the end they all still turn the wheels. What you don’t know is what the
heck this has to do with regular expressions! More than you might imagine.

† Califor nia has rather strict standards regulating the amount of pollution a car can produce. Because
of this, many cars sold in America come in “California” and “non-California” models.

29 April 2003 09:21

Regex Eng ine Types
Ther e ar e two fundamentally differ ent types of regex engines: one called “DFA”
(the electric engine of our story) and one called “NFA” (the gas engine). The
details of what NFA and DFA mean follow shortly (+ 156), but for now just con-
sider them names, like Bill and Ted. Or electric and gas.

Both engine types have been around for a long time, but like its gasoline counter-
part, the NFA type seems to be used more often. Tools that use an NFA engine
include the .NET languages, Ruby, Perl, Python, GNU Emacs, ed, sed, PHP, vi, most
versions of gr ep, and even a few versions of egr ep and awk. On the other hand, a
DFA engine is found in almost all versions of egr ep and awk, as well as lex and
flex . Some systems have a multi-engine hybrid system, using the most appropriate
engine for the job (or even one that swaps between engines for differ ent parts of
the same regex, as needed to get the best combination of features and speed). Ta-
ble 4-1 lists a few common programs and the regex engine that most versions use.
If your favorite program is not in the list, the section “Testing the Engine Type” on
the next page can help you find out which it is.

Table 4-1: Some Tools and Their Regex Engines

Eng ine type Programs

DFA awk (most versions), egr ep (most versions), flex, lex, MySQL, Procmail

Traditional NFA GNU Emacs, Java, gr ep (most versions), less, mor e, .NET languages,
PCRE library, Perl, PHP (pcr e routines), Python, Ruby,
sed (most versions), vi

POSIX NFA mawk, Mortice Kern Systems’ utilities, GNU Emacs (when requested)

Hybrid NFA/DFA GNU awk, GNU gr ep /egr ep, Tcl

As Chapter 3 illustrated, 20 years of development with both DFAs and NFAs
resulted in a lot of needless variety. Things were dirty. The POSIX standard came
in to clean things up by clearly specifying not only which metacharacters and fea-
tur es an engine should support, as mentioned in the previous chapter, but also
exactly the results you could expect from them. Super ficial details aside, the DFAs
(our electric engines) were alr eady well suited to adhere to this new standard, but
the kind of results an NFA traditionally provided were dif ferent, so changes were
needed. As a result, broadly speaking, there are thr ee types of regex engines:

• DFA (POSIX or not—similar either way)
• Traditional NFA (most common: Perl, .NET, Java, Python, . . .)
• POSIX NFA

Her e, we use “POSIX” to refer to the match semantics — the expected operation of
a regex that the POSIX standard specifies (which we’ll get to later in this chapter).
Don’t confuse this use of “POSIX” with uses surrounding regex featur es intr oduced

Star t Your Engines! 145

29 April 2003 09:21

146 Chapter 4: The Mechanics of Expression Processing

in that same standard (+ 125). Many programs support the features without sup-
porting the full match semantics.

Old (and minimally featured) programs like egr ep, awk, and lex wer e nor mally
implemented with the electric DFA engine, so the new standard primarily just con-
fir med the status quo — no big changes. However, ther e wer e some gas-powered
versions of these programs which had to be changed if they wanted to be POSIX-
compliant. The gas engines that passed the California Emission Standards tests
(POSIX NFA) wer e fine in that they produced results according to the standard, but
the necessary changes only increased how fickle they were to proper tuning.
Wher e befor e you might get by with slightly misaligned spark plugs, you now
have absolutely no tolerance. Gasoline that used to be “good enough” now causes
knocks and pings. But, so long as you know how to maintain your baby, the
engine runs smoothly and cleanly.

Fr om the Depar tment of Redundancy Depar tment
At this point, I’ll ask you to go back and review the story about engines. Every
sentence there rings with some truth about regular expressions. A second reading
should raise some questions. Particularly, what does it mean that an electric DFA

regex engine more or less “just runs?” What affects a gas-powered NFA? How can I
tune my regular expressions to run as I want on an NFA? What special concerns
does an emissions-controlled POSIX NFA have? What’s a “stalled engine” in the
regex world?

Testing the Engine Type
Because the type of engine used in a tool influences the type of features it can
of fer, and how those features appear to work, we can often learn the type of
engine a tool has merely by checking to see how it handles a few test expressions.
(After all, if you can’t tell the differ ence, the differ ence doesn’t matter.) At this
point in the book, I wouldn’t expect you to understand why the following test
results indicate what they do, but I want to offer these tests now so that if your
favorite tool is not listed in Table 4-1, you can investigate before continuing with
this and the subsequent chapters.

Tr aditional NFA or not?

The most commonly used engine is a Traditional NFA, and spotting it is easy. First,
ar e lazy quantifiers (+ 140) supported? If so, it’s almost certainly a Traditional NFA.
As we’ll see, lazy quantifiers are not possible with a DFA, nor would they make
any sense with a POSIX NFA. However, to make sure, simply apply the regex
!nfa;nfa not " to the string ‘nfa not’ — if only ‘nfa’ matches, it’s a Traditional NFA.
If the entire ‘nfa not’ matches, it’s either a POSIX NFA or a DFA.

29 April 2003 09:21

DFA or POSIX NFA?

Dif ferentiating between a POSIX NFA and a DFA is sometimes just as simple. Cap-
turing parentheses and backrefer ences ar e not supported by a DFA, so that can be
one hint, but there are systems that are a hybrid mix between the two engine
types, and so may end up using a DFA if there are no capturing parentheses.

Her e’s a simple test that can tell you a lot. Apply !X(.+)+X " to a string like
‘=XX======================’, as with this egr ep command:

echo =XX=== ; egrep ’X(.+)+X’

If it takes a long time to finish, it’s an NFA (and if not a Traditional NFA as per the
test in the previous section, it must be a POSIX NFA). If it finishes quickly, it’s either
a DFA or an NFA with some advanced optimization. Does it display a warning mes-
sage about a stack overflow or long match aborted? If so, it’s an NFA.

Match Basics
Befor e looking at the differ ences among these engine types, let’s first look at their
similarities. Certain aspects of the drive train are the same (or for all practical pur-
poses appear to be the same), so these examples can cover all engine types.

About the Examples
This chapter is primarily concerned with a generic, full-function regex engine, so
some tools won’t support exactly everything presented. In my examples, the dip-
stick might be to the left of the oil filter, while under your hood it might be behind
the distributor cap. Your goal is to understand the concepts so that you can drive
and maintain your favorite regex package (and ones you find interest in later).

I’ll continue to use Perl’s notation for most of the examples, although I’ll occasion-
ally show others to remind you that the notation is superficial and that the issues
under discussion transcend any one tool or flavor. To cut down on wordiness
her e, I’ll rely on you to check Chapter 3 (+ 113) if I use an unfamiliar construct.

This chapter details the practical effects of how a match is carried out. It would be
nice if everything could be distilled down to a few simple rules that could be
memorized without needing to understand what is going on. Unfortunately, that’s
not the case. In fact, with all this chapter offers, I identify only two all-encompass-
ing rules:

1. The match that begins earliest (leftmost) wins.

2. The standard quantifiers (! + ", !+ ", !? ", and !{m,n} ") are greedy.

We’ll look at these rules, their effects, and much more thr oughout this chapter.
Let’s start by diving into the details of the first rule.

Match Basics 147

29 April 2003 09:21

148 Chapter 4: The Mechanics of Expression Processing

Rule 1: The Match That Begins Earliest Wins
This rule says that any match that begins earlier (leftmost) in the string is always
pr eferr ed over any plausible match that begins later. This rule doesn’t say anything
about how long the winning match might be (we’ll get into that shortly), merely
that among all the matches possible anywhere in the string, the one that begins
leftmost in the string is chosen. Actually, since more than one plausible match can
start at the same earliest point, perhaps the rule should read “a match...” instead of
“the match...,” but that sounds odd.

Her e’s how the rule comes about: the match is first attempted at the very begin-
ning of the string to be searched (just before the first character). “Attempted”
means that every permutation of the entire (perhaps complex) regex is tested start-
ing right at that spot. If all possibilities are exhausted and a match is not found,
the complete expression is re-tried starting from just before the second character.
This full retry occurs at each position in the string until a match is found. A “no
match” result is reported only if no match is found after the full retry has been
attempted at each position all the way to the end of the string (just after the last
character).

Thus, when trying to match !ORA " against FLORAL, the first attempt at the start of the
string fails (since !ORA " can’t match FLO). The attempt starting at the second charac-
ter also fails (it doesn’t match LOR either). The attempt starting at the third posi-
tion, however, does match, so the engine stops and reports the match: FLORAL.

If you didn’t know this rule, results might sometimes surprise you. For example,
when matching !cat " against

The dragging belly indicates your cat is too fat

the match is in indicates, not at the word cat that appears later in the line. This
word cat could match, but the cat in indicates appears earlier in the string, so
it is the one matched. For an application like egr ep, the distinction is irrelevant
because it cares only whether ther e is a match, not wher e the match might be. For
other uses, such as with a search-and-r eplace, the distinction becomes paramount.

Her e’s a (hopefully simple) quiz: where does !fat;cat;belly;your " match in the
string ‘The dragging belly indicates your cat is too fat’? v Turn the
page to check your answer.

The “transmission” and the bump-along

It might help to think of this rule as the car’s transmission, connecting the engine
to the drive train while adjusting for the gear you’re in. The engine itself does the
real work (turning the crank); the transmission transfers this work to the wheels.

29 April 2003 09:21

The transmission’s main work: the bump-along
If the engine can’t find a match starting at the beginning of the string, it’s the
transmission that bumps the regex engine along to attempt a match at the next
position in the string, and the next, and the next, and so on. Usually. For instance,
if a regex begins with a start-of-string anchor, the transmission can realize that any
bump-along would be futile, for only the attempt at the start of the string could
possibly be successful. This and other internal optimizations are discussed in
Chapter 6.

Eng ine Pieces and Par ts
An engine is made up of parts of various types and sizes. You can’t possibly hope
to truly understand how the whole thing works if you don’t know much about the
individual parts. In a regex, these parts are the individual units — literal characters,
quantifiers (star and friends), character classes, parentheses, and so on, as
described in Chapter 3 (+ 113). The combination of these parts (and the engine’s
tr eatment of them) makes a regex what it is, so looking at ways they can be com-
bined and how they interact is our primary interest. First, let’s take a look at some
of the individual parts:

Literal text (e.g., a \+ ! M ...)
With a literal, non-metacharacter like !z " or !!", the match attempt is simply
“Does this literal character match the current text character?” If your regex is
only literal text, such as !usa ", it is treated as “ !u " and then !s " and then !a ". ” It’s
a bit more complicated if you have the engine do a case-insensitive match,
wher e !b " matches B and vice-versa, but it’s still pretty straightforward. (With
Unicode, there are a few additional twists + 109.)

Character classes, dot, Unicode proper ties, and the like
Matching dot, character classes, Unicode properties, and the like (+ 117) is
usually a simple matter: regardless of the length of the character class, it still
matches just one character.†

Dot is just a shorthand for a large character class that matches almost any
character (+ 110), so its actions are simple, as are the other shorthand conve-
niences such as !\w ", !\W ", and !\d ".

Captur ing parentheses
Par entheses used only for capturing text (as opposed to those used for
gr ouping) don’t change how the match is carried out.

† Actually, as we saw in the previous chapter (+ 126), a POSIX collating sequence can match multiple
characters, but this is not common. Also, certain Unicode characters can match multiple characters
when applied in a case-insensitive manner (+ 109), although most implementations do not sup-
port this.

Match Basics 149

29 April 2003 09:21

150 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 148.

Remember, the regex is tried completely each time, so !fat;cat;belly;your "
matches ‘The dragging belly indicates your cat is too fat’ rather
than fat, even though !fat " is listed first among the alternatives.

Sur e, the regex could conceivably match fat and the other alternatives, but
since they are not the earliest possible match (the match starting furthest to
the left), they are not the one chosen. The entire regex is attempted com-
pletely from one spot before moving along the string to try again from the
next spot, and in this case that means trying each alternative !fat ", !cat ",
!belly ", and !your " at each position before moving on.

Anchor s (e.g., !ˆ " !\Z " !(?<=\d) " ...)
Ther e ar e two basic types of anchors: simple ones (ˆ, $, \G, \b, ... + 127)
and complex ones (lookahead and lookbehind + 132). The simple ones are
indeed simple in that they test either the quality of a particular location in the
target string (ˆ, \Z, ...), or compare two adjacent characters (\<, \b, ...). On
the other hand, the lookaround constructs can contain arbitrary sub-expres-
sions, and so can be arbitrarily complex.

No “electric” parentheses, backreferences, or lazy quantifier s

I’d like to concentrate here on the similarities among the engines, but as foreshad-
owing of what’s to come in this chapter, I’ll point out a few interesting differ ences.
Capturing parentheses (and the associated backrefer ences and $1 type functional-
ity) are like a gas additive — they affect a gasoline (NFA) engine, but are irr elevant
to an electric (DFA) engine. The same thing applies to lazy quantifiers. The way a
DFA engine works completely precludes these concepts.† This explains why tools
developed with DFAs don’t provide these features. You’ll notice that awk, lex, and
egr ep don’t have backrefer ences or any $1 type functionality.

You might, however, notice that GNU’s version of egr ep does support backrefer-
ences. It does so by having two complete engines under the hood! It first uses a
DFA engine to see whether a match is likely, and then uses an NFA engine (which
supports the full flavor, including backrefer ences) to confirm the match. Later in
this chapter, we’ll see why a DFA engine can’t deal with backrefer ences or captur-
ing, and why anyone ever would want to use such an engine at all. (It has some
major advantages, such as being able to match very quickly.)

† This does not mean that there can’t be some mixing of technologies to try to get the best of both
worlds. This is discussed in a sidebar on page 183.

29 April 2003 09:21

Rule 2: The Standard Quantifier s Are Greedy
So far, we have seen features that are quite straightforward. They are also rather
boring — you can’t do much without involving more-power ful metacharacters such
as star, plus, alternation, and so on. Their added power requir es mor e infor mation
to understand them fully.

First, you need to know that the standard quantifiers (?, +, +, and {min,max}) are
gr eedy. When one of these governs a subexpression, such as !a " in !a? ", the !(expr)"

in !(expr)+ ", or ![0-9] " in ![0-9]+ ", ther e is a minimum number of matches that are
requir ed befor e it can be considered successful, and a maximum number that it
will ever attempt to match. This has been mentioned in earlier chapters — what’s
new here concer ns the rule that they always attempt to match as much as possi-
ble. (Some flavors provide other types of quantifiers, but this section is concerned
only with the standard, greedy ones.)

To be clear, the standard quantifiers settle for something less than the maximum
number of allowed matches if they have to, but they always attempt to match as
many times as they can, up to that maximum allowed. The only time they settle
for anything less than their maximum allowed is when matching too much ends
up causing some later part of the regex to fail. A simple example is using
!\b\w+s\b " to match words ending with an ‘s’, such as ‘regexes’. The !\w+ " alone is
happy to match the entire word, but if it does, it leaves nothing for the !s " to
match. To achieve the overall match, the !\w+ " must settle for matching only
‘regexes’, thereby allowing !s\b " (and thus the full regex) to match.

If it turns out that the only way the rest of the regex can succeed is when the
gr eedy construct in question matches nothing, well, that’s perfectly fine, if zero
matches are allowed (as with star, question, and {0,max} intervals). However, it
tur ns out this way only if the requir ements of some later subexpression force the
issue. It’s because the greedy quantifiers always (or, at least, try to) take more than
they minimally need that they are called greedy.

Gr eediness has many useful (but sometimes troublesome) implications. It explains,
for example, why ![0-9]+ " matches the full number in March 1998. Once the ‘1’
has been matched, the plus has fulfilled its minimum requir ement, but it’s greedy,
so it doesn’t stop. So, it continues, and matches the ‘998’ befor e being forced to
stop by the end of the string. (Since ![0-9] " can’t match the nothingness at the end
of the string, the plus finally stops.)

A subjective example

Of course, this method of grabbing things is useful for more than just numbers.
Let’s say you have a line from an email header and want to check whether it is the
subject line. As we saw in earlier chapters (+ 55), you simply use !ˆSubject: ".

Match Basics 151

29 April 2003 09:21

152 Chapter 4: The Mechanics of Expression Processing

However, if you use !ˆSubject: (.+) ", you can later access the text of the subject
itself via the tool’s after-the-fact parenthesis memory (for example, $1 in Perl).†

Befor e looking at why ! .+ " matches the entire subject, be sure to understand that
once the !ˆSubject: " part matches, you’re guaranteed that the entire regular
expr ession will eventually match. You know this because there’s nothing after
!ˆSubject: " that could cause the expression to fail; ! .+ " can never fail, since the
worst case of “no matches” is still considered successful for star.

So, why do we even bother adding ! .+ "? Well, we know that because star is
gr eedy, it attempts to match dot as many times as possible, so we use it to “fill”
$1. In fact, the parentheses add nothing to the logic of what the regular expression
matches—in this case we use them simply to capture the text matched by ! .+ " .

Once ! .+ " hits the end of the string, the dot isn’t able to match, so the star finally
stops and lets the next item in the regular expression attempt to match (for even
though the starred dot could match no further, perhaps a subexpression later in
the regex could). Ah, but since it turns out that there is no next item, we reach the
end of the regex and we know that we have a successful match.

Being too greedy

Let’s get back to the concept of a greedy quantifier being as greedy as it can be.
Consider how the matching and results would change if we add another ! .+ " :
!ˆSubject: (.+).+ ". The answer is: nothing would change. The initial ! .+ " (inside
the parentheses) is so greedy that it matches all the subject text, never leaving any-
thing for the second ! .+ " to match. Again, the failure of the second ! .+ " to match
something is not a problem, since the star does not requir e a match to be success-
ful. Wer e the second ! .+ " in parentheses as well, the resulting $2 would always be
empty.

Does this mean that after ! .+ ", a regular expression can never have anything that is
expected to actually match? No, of course not. As we saw with the !\w+s " example,
it is possible for something later in the regex to for ce something previously greedy
to give back (that is, relinquish or conceptually “unmatch”) if that’s what is neces-
sary to achieve an overall match.

Let’s consider the possibly useful !ˆ.+([0-9][0-9]) ", which finds the last two dig-
its on a line, wherever they might be, and saves them to $1. Her e’s how it works:
at first, ! .+ " matches the entire line. Because the following !([0-9][0-9]) " is
requir ed, its initial failure to match at the end of the line, in effect, tells ! .+ " “Hey,
you took too much! Give me back something so that I can have a chance to

† This example uses capturing as a forum for presenting greediness, so the example itself is appropri-
ate only for NFAs (because only NFAs support capturing). The lessons on greediness, however, apply
to all engines, including the non-capturing DFA.

29 April 2003 09:21

match.” Greedy components first try to take as much as they can, but they always
defer to the greater need to achieve an overall match. They’re just stubborn about
it, and only do so when forced. Of course, they’ll never give up something that
hadn’t been optional in the first place, such as a plus quantifier’s first match.

With this in mind, let’s apply !ˆ.+([0-9][0-9]) " to ‘about 24 characters long’.
Once ! .+ " matches the whole string, the requir ement for the first ![0-9] " to match
forces ! .+ " to give up ‘g’ (the last thing it had matched). That doesn’t, however,
allow ![0-9] " to match, so ! .+ " is again forced to relinquish something, this time the
‘n’. This cycle continues 15 more times until ! .+ " finally gets around to giving up ‘4’.

Unfortunately, even though the first ![0-9] " can then match that ‘4’, the second still
cannot. So, ! .+ " is forced to relinquish once more in an attempt fo find an overall
match. This time ! .+ " gives up the ‘2’, which the first ![0-9] " can then match. Now,
the ‘4’ is free for the second ![0-9] " to match, and so the entire expr ession matches
‘about 24 char˙˙˙’, with $1 getting ‘24’.

First come, fir st ser ved

Consider now using !ˆ.+([0-9]+) ", ostensibly to match not just the last two digits,
but the last whole number, however long it might be. When this regex is applied
to ‘Copyright 2003.’, what is captured? v Turn the page to check your answer.

Getting down to the details

I should clear up a few things here. Phrases like “ the ! .+ " gives up...” and “ the
![0-9] " for ces...” are slightly misleading. I used these terms because they’re easy to
grasp, and the end result appears to be the same as reality. However, what really
happens behind the scenes depends on the basic engine type, DFA or NFA. So, it’s
time to see what these really are.

Regex-Directed Ver sus Te xt-Directed
The two basic engine types reflect a fundamental differ ence in algorithms available
for applying a regular expression to a string. I call the gasoline-driven NFA engine
“r egex-dir ected,” and the electric-driven DFA “text-dir ected.”

NFA Eng ine: Regex-Directed
Let’s consider one way an engine might match !to(nite;knight;night) " against
the text ‘˙˙˙tonight˙˙˙’. Starting with the !t ", the regular expression is examined one
component at a time, and the “current text” is checked to see whether it is
matched by the current component of the regex. If it does, the next component is
checked, and so on, until all components have matched, indicating that an overall
match has been achieved.

Regex-Directed Ver sus Te xt-Directed 153

29 April 2003 09:21

154 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 153.

When !ˆ.,([0-9]+) " is applied to ‘Copyright 2003.’, what is captured by
the parentheses?

The desire is to get the last whole number, but it doesn’t work. As before,
! .+ " is forced to relinquish some of what it had matched because the subse-
quent ![0-9]+ " requir es a match to be successful. In this example, that means
unmatching the final period and ‘3’, which then allows ![0-9] " to match.
That’s governed by !+ ", so matching just once fulfills its minimum, and now
facing ‘.’ in the string, it finds nothing else to match.

Unlike before, though, there’s then nothing further that must match, so ! .+ " is
not forced to give up the 0 or any other digits it might have matched. Wer e
! .+ " to do so, the ![0-9]+ " would certainly be a grateful and greedy recipient,
but nope, first come first served. Greedy constructs give up something
they’ve matched only when forced. In the end, $1 gets only ‘3’.

If this feels counter-intuitive, realize that ![0-9]+ " is at most one match away
fr om ![0-9]+ ", which is in the same league as ! .+ ". Substituting that into
!ˆ.+([0-9]+) ", we get !ˆ.+(.+)" as our regex, which looks suspiciously like
the !ˆSubject: (.+).+ " example from page 152, where the second ! .+ " was
guaranteed to match nothing.

With the !to(nite;knight;night) " example, the first component is !t ", which
repeatedly fails until a ‘t’ is reached in the target string. Once that happens, the !o "

is checked against the next character, and if it matches, control moves to the next
component. In this case, the “next component” is !(nite;knight;night) " which
really means “ !nite " or !knight " or !night ". ” Faced with three possibilities, the
engine just tries each in turn. We (humans with advanced neural nets between our
ears) can see that if we’re matching tonight, the third alternative is the one that
leads to a match. Despite their brainy origins (+ 85), a regex-dir ected engine can’t
come to that conclusion until actually going through the motions to check.

Attempting the first alternative, !nite ", involves the same component-at-a-time
tr eatment as before: “ Try to match !n ", then !i ", then !t ", and finally !e ". ” If this fails,
as it eventually does, the engine tries another alternative, and so on until it
achieves a match or must report failure. Control moves within the regex from com-
ponent to component, so I call it “regex-dir ected.”

29 April 2003 09:21

The control benefits of an NFA eng ine

In essence, each subexpression of a regex in a regex-dir ected match is checked
independently of the others. Other than backrefer ences, ther e’s no interrelation
among subexpressions, except for the relation implied by virtue of being thrown
together to make a larger expression. The layout of the subexpressions and regex
contr ol structur es (e.g., alternation, parentheses, and quantifiers) controls an
engine’s overall movement through a match.

Since the regex directs the NFA engine, the driver (the writer of the regular expres-
sion) has considerable opportunity to craft just what he or she wants to happen.
(Chapters 5 and 6 show how to put this to use to get a job done correctly and effi-
ciently.) What this really means may seem vague now, but it will all be spelled
out soon.

DFA Eng ine: Te xt-Directed
Contrast the regex-dir ected NFA engine with an engine that, while scanning the
string, keeps track of all matches “currently in the works.” In the tonight exam-
ple, the moment the engine hits t, it adds a potential match to its list of those cur-
rently in progr ess:

in string in regex

after ˙˙˙tonight˙˙˙ possible matches: !to(nite;knight;night) "

Each subsequent character scanned updates the list of possible matches. After a
few more characters are matched, the situation becomes

in string in regex

after ˙˙˙tonight˙˙˙ possible matches: !to(nite;knight;night) "

with two possible matches in the works (and one alternative, knight, ruled out).
With the g that follows, only the third alternative remains viable. Once the h and t

ar e scanned as well, the engine realizes it has a complete match and can retur n
success.

I call this “text-directed” matching because each character scanned from the text
contr ols the engine. As in the example, a partial match might be the start of any
number of differ ent, yet possible, matches. Matches that are no longer viable are
pruned as subsequent characters are scanned. There are even situations where a
“partial match in progr ess” is also a full match. If the regex were !to(˙˙˙)? ", for
example, the parenthesized expression becomes optional, but it’s still greedy, so
it’s always attempted. All the time that a partial match is in progr ess inside those
par entheses, a full match (of ‘to’) is already confirmed and in reserve in case the
longer matches don’t pan out.

Regex-Directed Ver sus Te xt-Directed 155

29 April 2003 09:21

156 Chapter 4: The Mechanics of Expression Processing

If the engine reaches a character in the text that invalidates all the matches in the
works, it must revert to one of the full matches in reserve. If there are none, it
must declare that there are no matches at the current attempt’s starting point.

First Thoughts: NFA and DFA in Comparison
If you compare these two engines based only on what I’ve mentioned so far, you
might conclude that the text-directed DFA engine is generally faster. The regex-
dir ected NFA engine might waste time attempting to match differ ent subexpr es-
sions against the same text (such as the three alternatives in the example).

You would be right. During the course of an NFA match, the same character of the
target might be checked by many differ ent parts of the regex (or even by the same
part, over and over). Even if a subexpression can match, it might have to be
applied again (and again and again) as it works in concert with the rest of the
regex to find a match. A local subexpression can fail or match, but you just never
know about the overall match until you eventually work your way to the end of
the regex. (If I could find a way to include “It’s not over until the fat lady sings.” in
this paragraph, I would.) On the other hand, a DFA engine is deter ministic — each
character in the target is checked once (at most). When a character matches, you
don’t know yet if it will be part of the final match (it could be part of a possible
match that doesn’t pan out), but since the engine keeps track of all possible
matches in parallel, it needs to be checked only once, period.

The two basic technologies behind regular-expr ession engines have the somewhat
imposing names Nondeter ministic Finite Automaton (NFA) and Deter ministic Finite
Automaton (DFA). With mouthfuls like this, you see why I stick to just “NFA” and
“DFA.” We won’t be seeing these phrases spelled out again.†

Consequences to us as users

Because of the regex-dir ected natur e of an NFA, the details of how the engine
attempts a match are very important. As I said before, the writer can exercise a fair
amount of control simply by changing how the regex is written. With the tonight

example, perhaps less work would have been wasted had the regex been written
dif ferently, such as in one of the following ways:

• !to(ni(ght;te)<knight)"

• !tonite;toknight;tonight "

• !to(k?night;nite) "

† I suppose I could explain the underlying theory that goes into these names, if I only knew it! As I
hinted, the word deter ministic is pretty important, but for the most part the theory is not relevant, so
long as we understand the practical effects. By the end of this chapter, we will.

29 April 2003 09:21

With any given text, these all end up matching exactly the same thing, but in
doing so direct the engine in differ ent ways. At this point, we don’t know enough
to judge which of these, if any, are better than the others, but that’s coming soon.

It’s the exact opposite with a DFA — since the engine keeps track of all matches
simultaneously, none of these differ ences in repr esentation matter so long as in
the end they all repr esent the same set of possible matches. There could be a hun-
dr ed dif ferent ways to achieve the same result, but since the DFA keeps track of
them all simultaneously (almost magically — mor e on this later), it doesn’t matter
which form the regex takes. To a pur e DFA, even expressions that appear as differ-
ent as !abc " and ![aa-a](b;b{1};b)c " ar e utterly indistinguishable.

Thr ee things come to my mind when describing a DFA engine:

• DFA matching is very fast.
• DFA matching is very consistent.
• Talking about DFA matching is very boring.

I’ll eventually expand on all these points.

The regex-dir ected natur e of an NFA makes it interesting to talk about. NFAs pro-
vide plenty of room for creative juices to flow. There are great benefits in crafting
an expression well, and even greater penalties for doing it poorly. A gasoline
engine is not the only engine that can stall and conk out completely. To get to the
bottom of this, we need to look at the essence of an NFA engine: backtracking.

Backtracking
The essence of an NFA engine is this: it considers each subexpression or compo-
nent in turn, and whenever it needs to decide between two equally viable options,
it selects one and remembers the other to retur n to later if need be.

Situations where it has to decide among courses of action include anything with a
quantifier (decide whether to try another match), and alternation (decide which
alter native to try, and which to leave for later).

Whichever course of action is attempted, if it’s successful and the rest of the regex
is also successful, the match is finished. If anything in the rest of the regex eventu-
ally causes failure, the regex engine knows it can backtrack to where it chose the
first option, and can continue with the match by trying the other option. This way,
it eventually tries all possible permutations of the regex (or at least as many as
needed until a match is found).

Backtracking 157

29 April 2003 09:21

158 Chapter 4: The Mechanics of Expression Processing

A Really Crummy Analog y
Backtracking is like leaving a pile of bread crumbs at every fork in the road. If the
path you choose turns out to be a dead end, you can retrace your steps, giving up
gr ound until you come across a pile of crumbs that indicates an untried path.
Should that path, too, turn out to be a dead end, you can backtrack further, retrac-
ing your steps to the next pile of crumbs, and so on, until you eventually find a
path that leads to your goal, or until you run out of untried paths.

Ther e ar e various situations when the regex engine needs to choose between two
(or more) options — the alternation we saw earlier is only one example. Another
example is that upon reaching ! ˙˙˙x?˙˙˙ ", the engine must decide whether it should
attempt !x ". Upon reaching ! ˙˙˙x+˙˙˙ ", however, ther e is no question about trying to
match !x " at least once — the plus requir es at least one match, and that’s non-nego-
tiable. Once the first !x " has been matched, though, the requir ement is lifted and it
then must decide to match another !x ". If it decides to match, it must decide if it
will then attempt to match yet another... and another... and so on. At each of these
many decision points, a virtual “pile of crumbs” is left behind as a reminder that
another option (to match or not to match, whichever wasn’t chosen at each point)
remains viable at that point.

A crummy little example

Let’s look at a full example using our earlier !to(nite;knight;night) " regex on
the string ‘hot tonic tonight!’ (silly, yes, but a good example). The first com-
ponent, !t ", is attempted at the start of the string. It fails to match h, so the entire
regex fails at that point. The engine’s transmission then bumps along to retry the
regex from the second position (which also fails), and again at the third. This time
the !t " matches, but the subsequent !o " fails to match because the text we’re at is
now a space. So, again, the whole attempt fails.

The attempt that eventually starts at ˙˙˙tonic˙˙˙ is more inter esting. Once the to has
been matched, the three alternatives become three available options. The regex
engine picks one to try, remembering the others (“leaving some bread crumbs”) in
case the first fails. For the purposes of discussion, let’s say that the engine first
chooses !nite ". That expression breaks down to “!n " + !i " + !t " ...,” which gets to
˙˙˙tonic˙˙˙ befor e failing. Unlike the earlier failures, this failure doesn’t mean the
end of the overall attempt because other options — the as-of-yet untried alterna-
tives — still remain. (In our analogy, we still have piles of breadcrumbs we can
retur n to.) The engine chooses one, we’ll say !knight ", but it fails right away
because !k " doesn’t match ‘n’. That leaves one final option, !night ", but it too even-
tually fails. Since that was the final untried option, its failure means the failure of
the entire attempt starting at ˙˙˙tonic˙˙˙, so the transmission kicks in again.

29 April 2003 09:21

Once the engine works its way to attempt the match starting at ˙˙˙tonight!, it gets
inter esting again. This time, the !night " alter native successfully matches to the end
(which means an overall match, so the engine can report success at that point).

Tw o Impor tant Points on Backtracking
The general idea of how backtracking works is fairly simple, but some of the
details are quite important for real-world use. Specifically, when faced with multi-
ple choices, which choice should be tried first? Secondly, when forced to back-
track, which saved choice should the engine use? The answer to that first question
is this important principle:

In situations where the decision is between “make an attempt” and “skip
an attempt,” as with items governed by quantifiers, the engine always
chooses to first make the attempt for gr eedy quantifiers, and to first skip
the attempt for lazy (non-gr eedy) ones.

This has far-r eaching repercussions. For starters, it helps explain why the greedy
quantifiers are greedy, but it doesn’t explain it completely. To complete the pic-
tur e, we need to know which (among possibly many) saved options to use when
we backtrack. Simply put:

The most recently saved option is the one retur ned to when a local fail-
ur e forces backtracking. They’re used LIFO (last in first out).

This is easily understood in the crummy analogy — if your path becomes blocked,
you simply retrace your steps until you come back across a pile of bread crumbs.
The first you’ll retur n to is the one most recently laid. The traditional analogy for
describing LIFO also holds: like stacking and unstacking dishes, the most-recently
stacked will be the first unstacked.

Saved States
In NFA regular expression nomenclature, the piles of bread crumbs are known as
saved states. A state indicates where matching can restart from, if need be. It
reflects both the position in the regex and the point in the string where an untried
option begins. Because this is the basis for NFA matching, let me show the implica-
tions of what I’ve already said with some simple but verbose examples. If you’re
comfortable with the discussion so far, feel free to skip ahead.

Backtracking 159

29 April 2003 09:21

160 Chapter 4: The Mechanics of Expression Processing

A match without backtracking

Let’s look at a simple example, matching !ab?c " against abc. Once the !a " has
matched, the curr ent state of the match is reflected by:

at ‘abc’ matching !ab? c "

However, now that !b? " is up to match, the regex engine has a decision to make:
should it attempt the !b ", or skip it?. Well, since ? is greedy, it attempts the match.
But, so that it can recover if that attempt fails or eventually leads to failure, it adds

at ‘abc’ matching !ab?c "

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match in the regex just after the !b? ", picking up in the text from just
befor e the b (that is, where it is now). Thus, in effect, skipping the !b " as the ques-
tion mark allows.

Once the engine carefully places that pile of crumbs, it goes ahead and checks the
!b ". With the example text, it matches, so the new current state becomes:

at ‘abc’ matching !ab?c "

The final !c " matches as well, so we have an overall match. The one saved state is
no longer needed, so it is simply forgotten.

A match after backtracking

Now, if ‘ac’ had been the text to match, everything would have been the same
until the !b " attempt was made. Of course, this time it wouldn’t match. This means
that the path that resulted from actually attempting the ! ˙˙˙? " failed. Since there is a
saved state available to retur n to, this “local failure” does not mean overall failure.
The engine backtracks, meaning that it takes the most recently saved state as its
new current state. In this case, that would be the

at ‘ac’ matching !ab?c "

state that had been saved as the untried option before the !b " had been attempted.
This time, the !c " and c match up, so the overall match is achieved.

A non-match

Now let’s look at the same expression, but against ‘abX’. Before the !b " is
attempted, the question mark causes this state to be saved:

at ‘abX’ matching !ab?c "

29 April 2003 09:21

The !b " matches, but that avenue later turns out to be a dead end because the !c "

fails to match X. The failure results in a backtrack to the saved state. The engine
next tests !c " against the b that the backtrack effectively “unmatched.” Obviously,
this test fails, too. If there wer e other saved states, another backtrack would occur,
but since there aren’t any, the overall match at the current starting position is
deemed a failure.

Ar e we done? Nope. The engine’s transmission still does its “bump along the string
and retry the regex,” which might be thought of as a pseudo-backtrack. The match
restarts at:

at ‘abX’ matching !ab?c "

The whole match is attempted again from the new spot, and like before, all paths
lead to failure. After the next two attempts (from abX and abX) similarly fail, over-
all failure is finally reported.

A lazy match

Let’s look at the original example, but with a lazy quantifier, matching !ab??c "

against ‘abc’. Once the !a " has matched, the state of the match is reflected by:

at ‘abc’ matching !a b??c "

Now that !b?? " is next to be applied, the regex engine has a decision to make:
attempt the !b " or skip it? Well, since ?? is lazy, it specifically chooses to first skip
the attempt, but, so that it can recover if that attempt fails or eventually leads to
failur e, it adds

at ‘abc’ matching !a bc "

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match by making the attempt of !b ", in the text from just before the b.
(We know it will match, but the regex engine doesn’t yet know that, or even know
if it will ever need to get as far as making the attempt.) Once the state has been
saved, it goes ahead and continues from after its skip-the-attempt decision:

at ‘abc’ matching !ab??c "

The !c " fails to match ‘b’, so indeed the engine must backtrack to its one saved
state:

at ‘abc’ matching !a bc "

Of course, it matches this time, and the subsequent !c " matches ‘c’. The same final
match we got with the greedy !ab?c " is achieved, although via a differ ent path.

Backtracking 161

29 April 2003 09:21

162 Chapter 4: The Mechanics of Expression Processing

Backtracking and Greediness
For tools that use this NFA regex-dir ected backtracking engine, understanding how
backtracking works with your regular expression is the key to writing expressions
that accomplish what you want, and accomplish it quickly. We’ve seen how !? "

gr eediness and !?? " laziness works, so now let’s look at star and plus.

Star, plus, and their backtracking

If you consider !x+ " to be more or less the same as !x?x?x?x?x?x?˙˙˙ " (or, mor e
appr opriately, !(x(x(x(x˙˙˙?)?)?)?)? "),† it’s not too differ ent fr om what we have
alr eady seen. Before checking the item quantified by the star, the engine saves a
state indicating that if the check fails (or leads to failure), the match can pick up
after the star. This is done repeatedly, until an attempt via the star actually
does fail.

Thus, when matching ![0-9]+ " against ‘a 1234 num’, once ![0-9] " fails to match the
space after the 4, ther e ar e four saved states corresponding to locations to which
the plus can backtrack:

a 1234 num
a 1234 num
a 1234 num
a 1234 num

These repr esent the fact that the attempt of ![0-9] " had been optional at each of
these positions. When ![0-9] " fails to match the space, the engine backtracks to the
most recently saved state (the last one listed), picking up at ‘a 1234 num’ in the
text and at ![0-9]+ " in the regex. Well, that’s at the end of the regex. Now that
we’r e actually there and notice it, we realize that we have an overall match.

Note that ‘a 1234 num’ is not in the list of positions, because the first match using
the plus quantifier is requir ed, not optional. Would it have been in the list had the
regex been ![0-9]+ " ? (hint: it’s a trick question) v Turn the page to check your
answer.

Revisiting a fuller example

With our more detailed understanding, let’s revisit the !ˆ.+([0-9][0-9]) " example
fr om page 152. This time, instead of just pointing to “greediness” to explain why
the match turns out as it does, we can use our knowledge of NFA mechanics to
explain why in precise terms.

I’ll use ‘CA 95472, USA’ as an example. Once the ! .+ " has successfully matched to
the end of the string, there are a baker’s dozen saved states accumulated from the

† Just for comparison, remember that a DFA doesn’t care much about the form you use to express
which matches are possible; the three examples ar e identical to a DFA.

29 April 2003 09:21

star-gover ned dot matching 13 things that are (if need be) optional. These states
note that the match can pick up in the regex at !ˆ.+([0-9][0-9]) ", and in the
string at each point where a state was created.

Now that we’ve reached the end of the string and pass control to the first ![0-9] ",
the match obviously fails. No problem: we have a saved state to try (a baker’s
dozen of them, actually). We backtrack, resetting the current state to the one most
recently saved, to just before wher e ! .+ " matched the final A. Skipping that match
(or “unmatching” it, if you like) gives us the opportunity to try that A against the
first ![0-9] ". But, it fails.

This backtrack-and-test cycle continues until the engine effectively unmatches the
2, at which point the first ![0-9] " can match. The second can’t, however, so we
must continue to backtrack. It’s now irrelevant that the first ![0-9] " matched during
the previous attempt; the backtrack resets the current state to before the first
![0-9] ". As it tur ns out, the same backtrack resets the string position to just before
the 7, so the first ![0-9] " can match again. This time, so can the second (matching
the 2). Thus, we have a match: ‘CA 95472, USA’, with $1 getting ‘72’.

A few observations: first, backtracking entails not only recalculating our position
within the regex and the text, but also maintaining the status of the text being
matched by the subexpression within parentheses. Each backtrack caused the
match to be picked up before the parentheses, at !ˆ.+([0-9][0-9]) ". As far as the
simple match attempt is concerned, this is the same as !ˆ.+[0-9][0-9] ", so I used
phrases such as “picks up before the first ![0-9] ".” However, moving in and out of
the parentheses involves updating the status of what $1 should be, which also has
an impact on efficiency.

One final observation that may already be clear to you: something governed by
star (or any of the greedy quantifiers) first matches as much as it can without
regar d to what might follow in the regex. In our example, the ! .+ " does not magi-
cally know to stop at the first digit, or the second to the last digit, or any other
place until what’s governed by the greedy quantifier — the dot — finally fails. We
saw this earlier when looking at how !ˆ.+([0-9]+) " would never have more than
a single digit matched by the ![0-9]+ " part (+ 153).

More About Greediness
and Backtracking
Many concerns (and benefits) of greediness are shar ed by both an NFA and a DFA.
(A DFA doesn’t support laziness, which is why we’ve concentrated on greediness
up to this point.) I’d like to look at some ramifications of greediness for both, but
with examples explained in terms of an NFA. The lessons apply to a DFA just as
well, but not for the same reasons. A DFA is greedy, period, and there’s not much

More About Greediness and Backtracking 163

29 April 2003 09:21

164 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 162.

When matching ![0-9], " against ‘a 1234 num’, would ‘a 1234 num’ be par t of
a saved state?

The answer is “no.” I posed this question because the mistake is commonly
made. Remember, a component that has star applied can always match. If
that’s the entire regex, it can always match anywhere. This certainly includes
the attempt when the transmission applies the engine the first time, at the
start of the string. In this case, the regex matches at ‘a 1234 num’ and that’s
the end of it— it never even gets as far the digits.

In case you missed this, there’s still a chance for partial credit. Had there
been something in the regex after the ![0-9]+ " that kept an overall match
fr om happening before the engine got to:

at ‘a 1234˙˙˙’ matching ![0-9]+˙˙˙ "

then indeed, the attempt of the ‘1’ also creates the state:

at ‘a 1234˙˙˙’ matching ![0-9]+˙˙˙ "

mor e to say after that. It’s very easy to use, but pretty boring to talk about. An NFA,
however, is inter esting because of the creative outlet its regex-dir ected natur e pr o-
vides. Besides lazy quantifiers, there are a variety of extra features an NFA can sup-
port, including lookaround, conditionals, backrefer ences, and atomic grouping.
And on top of these, an NFA af fords the regex author direct control over how a
match is carried out, which can be a benefit when used properly, but it does cre-
ate some efficiency-r elated pitfalls (discussed in Chapter 6.)

Despite these differ ences, the match results are often similar. For the next few
pages, I’ll talk of both engine types, but describe effects in terms of the regex-
dir ected NFA. By the end of this chapter, you’ll have a firm grasp of just when the
results might differ, as well as exactly why.

Problems of Greediness
As we saw with the last example, ! .+ " always marches to the end of the line.† This
is because ! .+ " just thinks of itself and grabs what it can, only later giving up some-
thing if it is requir ed to achieve an overall match.

† With a tool or mode where a dot can match a newline, ! .+ " applied to strings that contain multiline
data matches through all the logical lines to the end of the whole string.

29 April 2003 09:21

Sometimes this can be a real pain. Consider a regex to match text wrapped in
double quotes. At first, you might want to write !".+"", but knowing what we
know about ! .+ ", guess where it matches in:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, since we understand the mechanics of matching, we don’t need to guess,
because we know. Once the initial quote matches, ! .+ " is free to match, and imme-
diately does so all the way to the end of the string. It backs off (or, perhaps more
appr opriately, is backed off by the regex engine) only as much as is needed until
the final quote can match. In the end, it matches

The name "McDonald’s" is said "makudonarudo" in Japanese

which is obviously not the double-quoted string that was intended. This is one
reason why I caution against the overuse of ! .+ ", as it can often lead to surprising
results if you don’t pay careful attention to greediness.

So, how can we have it match "McDonald’s" only? The key is to realize that we
don’t want “anything” between the quotes, but rather “anything except a quote.” If
we use ![ˆ"]+ " rather than ! .+ ", it won’t overshoot the closing quote.

The regex engine’s basic approach with !"[ˆ"]+"" is exactly the same as before.
Once the initial double quote matches, ![ˆ"]+ " gets a shot at matching as much as
it can. In this case, that’s up to the double quote after McDonald’s, at which point
it finally stops because ![ˆ"] " can’t match the quote. At that point, control moves to
the closing !"". It happily matches, resulting in overall success:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, there could be one unexpected change, and that’s because in most fla-
vors, ![ˆ"] " can match a newline, while dot doesn’t. If you want to keep the regex
fr om cr ossing lines, use ![ˆ"\n]".

Multi-Character “Quotes”
In the first chapter, I talked a bit about matching HTML tags, such as the sequence
very that renders the “very” in bold if the browser can do so. Attempting
to match a ˙˙˙ sequence seems similar to matching a quoted string, except
the “quotes” in this case are the multi-character sequences and . Like the
quoted string example, multiple sets of “quotes” cause problems if we use ! .+ ":

˙˙˙Billions and Zillions of suns˙˙˙

With ! .+ ", the greedy ! .+ " causes the match in progr ess to zip to the end of
the line, backtracking only far enough to allow the ! " to match, matching the
last on the line instead of the one corresponding to the opening ! " at the
start of the match.

More About Greediness and Backtracking 165

29 April 2003 09:21

166 Chapter 4: The Mechanics of Expression Processing

Unfortunately, since the closing delimiter is more than one character, we can’t
solve the problem with a negated class as we did with double-quoted strings. We
can’t expect something like ![ˆ]+ " to work. A character class repr e-
sents only one character and not the full sequence that we want. Don’t let
the apparent structure of ![ˆ] " fool you. It is just a class to match one charac-
ter — any one except <, >, /, and B. It is the same as, say ![ˆ/<>B] ", and certainly
doesn’t work as an “anything not ” construct. (With lookahead, you can insist
that ! " not match at a particular point; we’ll see this in action in the next
section.)

Using Lazy Quantifier s
These problems arise because the standard quantifiers are greedy. Some NFAs sup-
port lazy quantifiers (+ 140), with +? being the lazy version of +. With that in
mind, let’s apply !.,?" to:

˙˙˙Billions and Zillions of suns˙˙˙

After the initial ! " has matched, ! .+? " immediately decides that since it doesn’t
requir e any matches, it lazily doesn’t bother trying to perfor m any. So, it immedi-
ately passes control to the following !<":

at ‘˙˙˙Bi l l i o n s˙˙˙’ matching !.+? "

The !<" doesn’t match at that point, so control retur ns back to ! .+? " wher e it still has
its untried option to attempt a match (to attempt multiple matches, actually). It
begrudgingly does so, with the dot matching the underlined B in ˙˙˙Billions˙˙˙.
Again, the +? has the option to match more, or to stop. It’s lazy, so it first tries
stopping. The subsequent !<" still fails, so ! .+? " has to again exercise its untried
match option. After eight cycles, ! .+? " eventually matches Billions, at which
point the subsequent !<" (and the whole ! " subexpr ession) is finally able to
match:

˙˙˙Billions and Zillions of suns˙˙˙

So, as we’ve seen, the greediness of star and friends can be a real boon at times,
while troublesome at others. Having non-greedy, lazy versions is wonderful, as
they allow you to do things that are otherwise very difficult (or even impossible).
Still, I’ve often seen inexperienced programmers use lazy quantifiers in inappropri-
ate situations. In fact, what we’ve just done may not be appropriate. Consider
applying ! .+? " to:

˙˙˙Billions and Zillions of suns˙˙˙

It matches as shown, and while I suppose it depends on the exact needs of the sit-
uation, I would think that in this case that match is not desired. However, ther e’s
nothing about ! .+? " to stop it from marching right past the Zillion’s to its .

29 April 2003 09:21

This is an excellent example of why a lazy quantifier is often not a good replace-
ment for a negated class. In the !".+"" example, using ![ˆ"] " as a replacement for
the dot specifically disallows it from marching past a delimiter — a quality we wish
our current regex had.

However, if negative lookahead (+ 132) is supported, you can use it to create
something comparable to a negated class. Alone, !(?!)" is a test that is success-
ful if is not at the current location in the string. Those are the locations that
we want the dot of ! .+? " to match, so changing that dot to !((?!).)"

cr eates a regex that matches where we want it, but doesn’t match where we don’t.
Assembled all together, the whole thing can become quite confusing, so I’ll show
it here in a free-spacing mode (+ 110) with comments:

 # Match the opening
(# Now, only as many of the following as needed . . .

(?!) # If not . . .
. # . . . any character is okay

)+? #
 # . . . until the closing delimiter can match

With one adjustment to the lookahead, we can put the quantifier back to a normal
gr eedy one, which may be less confusing to some:

 # Match the opening
(# Now, only as many of the following as needed . . .

(?! </?B>) # If not , and not . . .
. # . . . any character is okay

)+ #
 # . . . until the closing delimiter can match.

Now, the lookahead prohibits the main body to match beyond as well as
, which eliminates the problem we tried to solve with laziness, so the laziness
can be removed. This expression can still be improved; we’ll see it again during
the discussion on efficiency in Chapter 6 (+ 270).

Greediness and Laziness Always Favor a Match
Recall the price display example from Chapter 2 (+ 51). We’ll examine this exam-
ple in detail at a number of points during this chapter, so I’ll recap the basic issue:
due to floating-point repr esentation pr oblems, values that should have been
“1.625” or “3.00” were sometimes coming out like “1.62500000002828” and
“3.00000000028822”. To fix this, I used

$price =˜ s/(\.\d\d[1-9]?)\d+/$1/;

to lop off all but the first two or three decimal digits from the value stored in the
variable $price. The !\.\d\d " matches the first two decimal digits regardless,
while the ![1-9]? " matches the third digit only if it is non-zero.

More About Greediness and Backtracking 167

29 April 2003 09:21

168 Chapter 4: The Mechanics of Expression Processing

I then noted:
Anything matched so far is what we want to keep, so we wrap it in paren-
theses to capture to $1. We can then use $1 in the replacement string. If this
is the only thing that matches, we replace exactly what was matched with
itself — not very useful. However, we go on to match other items outside the
$1 par entheses. They don’t find their way to the replacement string, so the
ef fect is that they’re removed. In this case, the “to be removed” text is any
extra digits, the !\d+ " at the end of the regex.

So far so good, but let’s consider what happens when the contents of the variable
$price is already well formed. When it is 27.625, the !(\.\d\d[1-9]?) " part
matches the entire decimal part. Since the trailing !\d+ " doesn’t match anything, the
substitution replaces the ‘.625’ with ‘.625’ — an effective no-op.

This is the desired result, but wouldn’t it be just a bit more efficient to do the
replacement only when it would have some real effect (that is, do the replacement
only when !\d+ " actually matches something) ? Well, we know how to write “at
least one digit”! Simply replace !\d, " with !\d+ ":

$price =˜ s/(\.\d\d[1-9]?)\d+/$1/

With crazy numbers like “1.62500000002828”, it still works as before, but with
something such as “9.43”, the trailing !\d+ " isn’t able to match, so rightly, no substi-
tution occurs. So, this is a great modification, yes? No! What happens with a three-
digit decimal value like 27.625? We want this value to be left alone, but that’s not
what happens. Stop for a moment to work through the match of 27.625 yourself,
with particular attention to how the ‘5’ interacts with the regex.

In hindsight, the problem is really fairly simple. Picking up in the action once
!(\.\d\d[1-9]?)\d+ " has matched 27.625, we find that !\d+ " can’t match. That’s
no problem for the overall match, though, since as far as the regex is concerned,
the match of ‘5’ by ![1-9] " was optional and there is still a saved state to try. This
state allows ![1-9]? " to match nothing, leaving the 5 to fulfill the must-match-one
requir ement of !\d+ ". Thus, we get the match, but not the right match: .625 is
replaced by .62, and the value becomes incorrect.

What if ![1-9]? " wer e lazy instead? We’d get the same match, but without the inter-
vening “match the 5 but then give it back” steps, since the lazy ![1-9]?? " first skips
the match attempt. So, laziness is not a solution to this problem.

The Essence of Greediness, Laziness,
and Backtracking
The lesson of the preceding section is that it makes no differ ence whether there
ar e gr eedy or lazy components to a regex; an overall match takes precedence over
an overall non-match. This includes taking from what had been greedy (or giving
to what had been lazy) if that’s what is requir ed to achieve a match, because when

29 April 2003 09:21

a “local failure” is hit, the engine keeps going back to the saved states (retracing
steps to the piles of bread crumbs), trying the untested paths. Whether greedily or
lazily, every possible path is tested before the engine admits failure.

The order that the paths are tested is differ ent between greedy and lazy quantifiers
(after all, that’s the whole point of having the two!), but in the end, if no match is
to be found, it’s known only after testing every possible path.

If, on the other hand, there exists just one plausible match, both a regex with a
gr eedy quantifier and one with a lazy quantifier find that match, although the
series of paths they take to get there may be wildly differ ent. In these cases,
selecting greedy or lazy doesn’t influence what is matched, but merely how long
or short a path the engine takes to get there (which is an efficiency issue, the sub-
ject of Chapter 6).

Finally, if there is mor e than one plausible match, understanding greediness, lazi-
ness, and backtracking allows you to know which is selected. The !".+"" example
has three plausible matches:

The name "McDonald’s" is said "makudonarudo" in Japanese

We know that !".+"", with the greedy star, selects the longest one, and that !".+?"",
with the lazy star, selects the shortest.

Possessive Quantifier s and Atomic Grouping
The ‘.625’ example on the facing page shows important insights about NFA match-
ing as we know it, and how with that particular example our naïve intents were
thwarted. Some flavors do provide tools to help us here, but before looking at
them, it’s absolutely essential to fully understand the preceding section, “The
Essence of Greediness, Laziness, and Backtracking.” Be sur e to review it if you
have any doubts.

So, continuing with the ‘.625’ example and recalling what we really want to hap-
pen, we know that if the matching can successfully get to the marked position in
!(\.\d\d[1-9]?)\d+ ", we never want it to go back. That is, we want ![1-9] " to
match if possible, but if it does, we don’t want that match to be given up. Saying it
mor e forcefully, we would rather have the entire match attempt fail, if need be,
befor e giving up something matched by the ![1-9] ". (As you’ll recall, the problem
befor e when this regex was applied to ‘.625’ was that it indeed didn’t fail, but
instead went back to try the remaining skip-me alternative.)

Well, what if we could somehow eliminate that skip-me alternative (eliminate the
state that !? " saves before it makes the attempt to match ![1-9] ") ? If ther e was no
state to go back to, a match of ![1-9] " wouldn’t be given up. That’s what we want!
Ah, but if there was no skip-me state to go back to, what would happen if we

More About Greediness and Backtracking 169

29 April 2003 09:21

170 Chapter 4: The Mechanics of Expression Processing

applied the regex to ‘.5000’? The ![1-9] " couldn’t match, and in this case, we do
want it to go back and skip the ![1-9] " so that the subsequent !\d+ " can match dig-
its to be removed.

It sounds like we have two conflicting desires, but thinking about it, what we
really want is to eliminate the skip-me alternative only if the match-me alternative
succeeds. That is, if ![1-9] " is indeed able to match, we’d like to get rid of the skip-
me saved state so that it is never given up. This is possible, with regex flavors that
support !(?>˙˙˙)" atomic grouping (+ 137), or possessive quantifiers like ![1-9]?+ "

(+ 140). We’ll look at atomic grouping first.

Atomic grouping with !(?>˙˙˙) "

In essence, matching within !(?>˙˙˙)" carries on normally, but if and when matching
is able to exit the construct (that is, get past its closing parenthesis), all states that
had been saved while within it are thr own away. In practice, this means that once
the atomic grouping has been exited, whatever text was matched within it is now
one unchangeable unit, to be kept or given back only as a whole. All saved states
repr esenting untried options within the parentheses are eliminated, so backtrack-
ing can never undo any of the decisions made within (at least not once they’re
“locked in” when the construct is exited).

So, let’s consider !(\.\d\d(?>[1-9]?))\d+ ". Quantifiers work normally within
atomic grouping, so if ![1-9] " is not able to match, the regex retur ns to the skip-me
saved state the !? " had left. That allows matching to leave the atomic grouping and
continue on to the !\d+ ". In this case, there are no saved states to flush when con-
tr ol leaves the atomic grouping (that is, there are no saved states remaining that
had been created within it).

However, when ![1-9] " is able to match, matching can exit the atomic grouping,
but this time, the skip-me state is still there. Since it had been created within the
atomic grouping we’re now exiting, it is thrown away. This would happen when
matching against both ‘.625’, and, say, ‘.625000’. In the latter case, having elimi-
nated the state turns out not to matter, since the !\d+ " has the ‘.625000’ to match,
after which that regex is done. With ‘.625’ alone, the inability of !\d+ " to match has
the regex engine wanting to backtrack, but it can’t since that skip-me alternative
was thrown away. The lack of any state to backtrack to results in the overall match
attempt failing, and ‘.625’ is left undisturbed as we wish.

The essence of atomic grouping
The section “The Essence of Greediness, Laziness, and Backtracking,” starting on
page 168, makes the important point that neither greediness nor laziness influence
which paths can be checked, but merely the or der in which they are checked. If
no match is found, whether by a greedy or a lazy ordering, in the end, every
possible path will have been checked.

29 April 2003 09:21

Atomic grouping, on the other hand, is fundamentally differ ent because it actually
eliminates possible paths. Eliminating states can have a number of differ ent conse-
quences, depending on the situation:

• No Effect If a match is reached before one of the eliminated states would
have been called upon, there is no effect on the match. We saw this a moment
ago with the ‘.625000’ example. A match was found before the eliminated
state would have come into play.

• Prohibit Match The elimination of states can mean that a match that would
have otherwise been possible now becomes impossible. We saw this with the
‘.625’ example.

• Dif ferent Match In some cases, it’s possible to get a dif ferent match due to
the elimination of states.

• Faster Failure It’s possible for the elimination of states to do nothing more
than allow the regex engine, when no match is to be found, report that fact
mor e quickly. This is discussed right after the quiz.

Her e’s a little quiz: what does the construct !(?>.,?)" do? What kind of things do
you expect it can match? v Turn the page to check your answer.

Some states may remain. When the engine exits atomic grouping during a
match, only states that had been created while inside the atomic grouping ar e
eliminated. States that might have been there befor e still remain after, so the entire
text matched by the atomic subexpression may be unmatched, as a whole, if
backtracking later reverts to one of those previous states.

Faster failures with atomic grouping. Consider !ˆ\w+: " applied to ‘Subject’. We
can see, just by looking at it, that it will fail because the text doesn’t have a colon
in it, but the regex engine won’t reach that conclusion until it actually goes
thr ough the motions of checking.

So, by the time !:" is first checked, the !\w+ " will have marched to the end of the
string. This results in a lot of states — one “skip me” state for each match of !\w " by
the plus (except the first, since plus requir es one match). When then checked at
the end of the string, !:" fails, so the regex engine backtracks to the most recently
saved state:

at ‘Su b j e ct’ matching !ˆ\w+:"

at which point the !:" fails again, this time trying to match ‘t’. This backtrack-test-
fail cycle happens all the way back to the oldest state:

at ‘Subject’ matching !ˆ\w+:"

After the attempt from the final state fails, overall failure can finally be announced.

More About Greediness and Backtracking 171

29 April 2003 09:21

172 Chapter 4: The Mechanics of Expression Processing

Quiz Answer
v Answer to the question on page 171.

What does !(?>.,?)" match?

It can never match, anything. At best, it’s a fairly complex way to accomplish
nothing! ! +? " is the lazy ! + ", and governs a dot, so the first path it attempts is
the skip-the-dot path, saving the try-the-dot state for later, if requir ed. But the
moment that state has been saved, it’s thrown away because matching exits
the atomic grouping, so the skip-the-dot path is the only one ever taken. If
something is always skipped, it’s as if it’s not there at all.

All that backtracking is a lot of work that after just a glance we know to be unnec-
essary. If the colon can’t match after the last letter, it certainly can’t match one of
the letters the !+ " is forced to give up!

So, knowing that none of the states left by !\w+ ", once it’s finished, could possibly
lead to a match, we can save the regex engine the trouble of checking them:
!ˆ(?>\w+):" By adding the atomic grouping, we use our global knowledge of the
regex to enhance the local working of !\w+ " by having its saved states (which we
know to be useless) thrown away. If there is a match, the atomic grouping won’t
have mattered, but if there’s not to be a match, having thrown away the useless
states lets the regex come to that conclusion more quickly. (An advanced imple-
mentation may be able to apply this optimization for you automatically + 251.)

As we’ll see in the Chapter 6 (+ 269), this technique shows a very valuable use of
atomic grouping, and I suspect it will become the most common use as well.

Possessive Quantifier s, ?+, ++, ++, and {m,n}+

Possessive quantifiers are much like greedy quantifiers, but they never give up a
partial amount of what they’ve been able to match. Once a plus, for example, fin-
ishes its run, it has created quite a few saved states, as we saw with the !ˆ\w+ "

example. A possessive plus simply throws those states away (or, mor e likely,
doesn’t bother creating them in the first place).

As you might guess, possessive quantifiers are closely related to atomic grouping.
Something possessive like !\w++ " appears to match in the same way as !(?>\w+)";
one is just a notational convenience for the other.† With possessive quantifiers,
!ˆ(?>\w+):" can be rewritten as !ˆ\w++: ", and !(\.\d\d(?>[1-9]?))\d+ " can be
rewritten as !(\.\d\d[1-9]?+)\d+ ".

† A smart implementation may be able to make the possessive version a bit more efficient than its
atomic-gr ouping counterpart (+ 250).

29 April 2003 09:21

Be sure to understand the differ ence between !(?> M)+ " and !(?> M+) ". The first one
thr ows away unused states created by !M ", which is not very useful since !M " doesn’t
cr eate any states. The second one throws away unused states created by !M+ ",
which certainly can be useful.

When phrased as a comparison between !(?> M)+ " and !(?> M+) ", it’s perhaps clear
that the second one is the one comparable to !M++ ", but when converting some-
thing more complex like !(\\";[ˆ"])++ " fr om possessive quantifiers to atomic
gr ouping, it’s tempting to just add ‘?>’ to the parentheses that are alr eady ther e:
!(?>\\";[ˆ"])++ ". The new expression might happen to achieve your goal, but be
clear that is not comparable to the original possessive-quantifier version; it’s as if
changing !M++ " to !(?>M)+ ". Rather, to be comparable, remove the possessive plus,
and then wrap what remains in atomic grouping: !(?>(\\";[ˆ"])+)".

The Backtracking of Lookaround
It might not be apparent at first, but lookaround (introduced in Chapter 2 + 59) is
closely related to atomic grouping and possessive quantifiers. There are four types
of lookaround: positive and negative flavors of lookahead and lookbehind. They
simply test whether their subexpression can and can’t match starting at the current
location (lookahead), or ending at the current location (lookbehind).

Looking a bit deeper, how does lookaround work in our NFA world of saved states
and backtracking? As a subexpression within one of the lookaround constructs is
being tested, it’s as if it’s in its own little world. It saves states as needed, and
backtracks as necessary. If the entire subexpr ession is able to match successfully,
what happens? With positive lookar ound, the construct, as a whole, is considered a
success, and with negative lookar ound, it’s considered a failure. In either case,
since the only concern is whether there’s a match (and we just found out that, yes,
ther e’s a match), the “little world” of the match attempt, including any saved states
that might have been left over from that attempt, is thrown away.

What about when the subexpression within the lookaround can’t match? Since it’s
being applied in its “own little world,” only states created within the current look-
ar ound construct are available. That is, if the regex finds that it needs to backtrack
further, beyond where the lookaround construct started, it’s found that the current
subexpr ession can not match. For positive lookahead, this means failure, while for
negative lookahead, it means success. In either case, there are no saved states left
over (had there been, the subexpression match would not have finished), so
ther e’s no “little world” left to throw away.

So, we’ve seen that in all cases, once the lookaround construct has finished, there
ar e no saved states left over from its application. Any states that might have been
left over, such as in the case of successful positive lookahead, are thr own away.

More About Greediness and Backtracking 173

29 April 2003 09:21

174 Chapter 4: The Mechanics of Expression Processing

Well, where else have we seen states being thrown away? With atomic grouping
and possessive quantifiers, of course.

Mimicking atomic grouping with positive lookahead

It’s perhaps mostly academic for flavors that support atomic grouping, but can be
quite useful for those that don’t: if you have positive lookahead, and if it supports
capturing parentheses within the lookahead (most flavors do, but Tcl’s lookahead,
for example, does not), you can mimic atomic grouping and possessive quanti-
fiers. !(?>regex)" can be mimicked with !(?=(regex))\1 ". For example, compare
!ˆ(?>\w+): " with !ˆ(?=(\w+))\1: ".

The lookahead version has !\w+ " gr eedily match as much as it can, capturing an
entir e word. Because it’s within lookahead, the intermediate states are thr own
away when it’s finished (just as if, incidentally, it had been within atomic group-
ing). Unlike atomic grouping, the matched word is not included as part of the
match (that’s the whole point of lookahead), but the word does remain captured.
That’s a key point because it means that when !\1 " is applied, it’s actually being
applied to the very text that filled it, and it’s certain to succeed. This extra step of
applying !\1 " is simply to move the regex past the matched word.

This technique is a bit less efficient than real atomic grouping because of the extra
time requir ed to rematch the text via !\1 ". But, since states are thr own away, it fails
mor e quickly than a raw !\w+: " when the !:" can’t match.

Is Alternation Greedy?
How alternation works is an important point because it can work in fundamentally
dif ferent ways with differ ent regex engines. When alternation is reached, any num-
ber of the alternatives might be able to match at that point, but which will? Put
another way, if more than one can match, which will? If it’s always the one that
matches the most text, one might say that alternation is greedy. If it’s always the
shortest amount of text, one might say it’s lazy? Which (if either) is it?

Let’s look at the Traditional NFA engine used in Perl, Java packages, .NET lan-
guages, and many others (+ 145). When faced with alternation, each alternative is
checked in the left-to-right order given in the expression. With the example regex
of !ˆ(Subject;Date): ", when the !Subject;Date " alter nation is reached, the first
alter native, !Subject ", is attempted. If it matches, the rest of the regex (the subse-
quent !: ") is given a chance. If it turns out that it can’t match, and if other alterna-
tives remain (in this case, !Date "), the regex engine backtracks to try them. This is
just another case of the regex engine backtracking to a point where untried options
ar e still available. This continues until an overall match is achieved, or until all
options (in this case, all alternatives) are exhausted.

29 April 2003 09:21

So, with that common Traditional NFA engine, what text is actually matched by
!tour;to;tournament " when applied to the string ‘three tournaments won’ ? All
the alternatives are attempted (and fail) during attempts starting at each character
position until the transmission starts the attempt at ‘three tournaments won’.
This time, the first alternative, !tour ", matches. Since the alternation is the last thing
in the regex, the moment the !tour " matches, the whole regex is done. The other
alter natives ar e not even tried again.

So, we see that alternation is neither greedy nor lazy, but or dered, at least for a
Traditional NFA. This is more power ful than greedy alternation because it allows
mor e contr ol over just how a match is attempted — it allows the regex author to
expr ess “try this, then that, and finally try that, until you get a match.”

Not all flavors have ordered alternation. DFAs and POSIX NFAs do have greedy
alter nation, always matching with the alternative that matches the most text
(!tournament " in this case). But, if you’re using Perl, a .NET language, virtually any
Java regex package, or any other system with a Traditional NFA engine (list + 145),
your alternation is or dered.

Taking Advantage of Ordered Alternation
Let’s revisit the !(\.\d\d[1-9]?)\d+ " example from page 167. If we realize that
!\.\d\d[1-9]? ", in effect, says “allow either !\.\d\d " or !\.\d\d[1-9] " ”, we can
rewrite the entire expr ession as !(\.\d\d<\.\d\d[1-9])\d+ ". (Ther e is no com-
pelling reason to make this change — it’s merely a handy example.) Is this really
the same as the original? If alternation is truly greedy, then it is, but the two are
quite differ ent with ordered alternation.

Let’s consider it as ordered for the moment. The first alternative is selected and
tested, and if it matches, control passes to the !\d+ " that follows the alternation. If
ther e ar e digits remaining, the !\d+ " matches them, including any initial non-zero
digit that was the root of the original example’s problem (if you’ll recall the origi-
nal problem, that’s a digit we want to match only within the parentheses, not by
the !\d+ " after the parentheses). Also, realize that if the first alternative can’t match,
the second alternative will certainly not be able to, as it begins with a copy of the
entir e first alternative. If the first alternative doesn’t match, though, the regex
engine nevertheless expends the effort for the futile attempt of the second.

Inter estingly, if we swap the alternatives and use !(\.\d\d[1-9]<\.\d\d)\d+ ",
we do effectively get a replica of the original greedy !(\.\d\d[1-9]?)\d+ ". The
alter nation has meaning in this case because if the first alternative fails due to the
trailing ![1-9] ", the second alternative still stands a chance. It’s still ordered alterna-
tion, but now we’ve selected the order to result in a greedy-type match.

More About Greediness and Backtracking 175

29 April 2003 09:21

176 Chapter 4: The Mechanics of Expression Processing

When first distributing the ![1-9]? " to two alternatives, in placing the shorter one
first, we fashioned a non-greedy !? " of sorts. It ends up being meaningless in this
particular example because there is nothing that could ever allow the second alter-
native to match if the first fails. I see this kind of faux-alternation often, and it is
invariably a mistake. In one book I’ve read, !a+((ab)+<b+)" is used as an example
in explaining something about regex parentheses. It’s a pointless example because
the first alternative, !(ab)+ ", can never fail, so any other alternatives are utterly
meaningless. You could add

!a+((ab)+;b+;.+;partridge in a pear tree;[a-z])"

and it wouldn’t change the meaning a bit. The moral is that with ordered alterna-
tion, when more than one alternative can potentially match the same text, care
must be taken when selecting the order of the alternatives.

Ordered alternation pitfalls

Order ed alter nation can be put to your advantage by allowing you to craft just the
match you want, but it can also lead to unexpected pitfalls for the unaware. Con-
sider matching a January date of the form ‘Jan 31’. We need something more
sophisticated than, say, !Jan [0123][0-9] ", as that allows “dates” such as ‘Jan 00’,
‘Jan 39’, and disallows, ‘Jan 7’.

One way to match the date part is to attack it in sections. To match from the first
thr ough the ninth, using !0?[1-9] " allows a leading zero. Adding ![12][0-9] "

allows for the tenth through the 29th, and !3[01] " rounds it out. Putting it all
together, we get !Jan (0?[1-9]<[12][0-9]<3[01])".

Wher e do you think this matches in ‘Jan 31 is Dad’s birthday’? We want it to
match ‘Jan 31’, of course, but ordered alternation actually matches only ‘Jan 3’.
Surprised? During the match of the first alternative, !0?[1-9] ", the leading !0? " fails,
but the alternative matches because the subsequent ![1-9] " has no trouble match-
ing the 3. Since that’s the end of the expression, the match is complete.

When the order of the alternatives is adjusted so that the alternative that can
potentially match a shorter amount of text is placed last, the problem goes away.
This works: !Jan ([12][0-9]<3[01]<0?[1-9])".

Another approach is !Jan (31<[123]0<[012]?[1-9])". Like the first solution,
this requir es car eful arrangement of the alternatives to avoid the problem. Yet, a
third approach is !Jan (0[1-9]<[12][0-9]?<3[01]?<[4-9])", which works
pr operly regardless of the ordering. Comparing and contrasting these three expres-
sions can prove quite interesting (an exercise I’ll leave for your free time, although
the sidebar on the facing page should be helpful).

29 April 2003 09:21

A Few Ways to Slice and Dice a Date
A few approaches to the date-matching problem posed on page 176. The
calendar associated with each regex shows what can be matched by each
alter native color-coded within the regex.

 4

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31

 1 2 3 5 6 7 8 9

08

31|[123]0|[012]?[1-9]

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31

 1 2 3 4 5 6 7 8 9

08

01 02 03 04 05 06 07 09

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31

01 02 3 4 5 6 7 8 9

08 [12][0-9]|3[01]|0?[1-9]

0[1-9]|[12][0-9]?|3[01]?|[4-9]

NFA, DFA, and POSIX
“T he Longest-Leftmost”
Let me repeat what I’ve said before: when the transmission starts a DFA engine
fr om some particular point in the string, and there exists a match or matches to be
found at that position, the DFA finds the longest possible match, period. Since it’s
the longest from among all possible matches that start equally furthest to the left,
it’s the “longest-leftmost” match.

Really, the longest

Issues of which match is longest aren’t confined to alternation. Consider how an
NFA matches the (horribly contrived) !one(self)?(selfsufficient)? " against the
string oneselfsufficient. An NFA first matches !one " and then the greedy
!(self)? ", leaving !(selfsufficient)? " left to try against sufficient. It doesn’t
match, but that’s okay since it is optional. So, the Traditional NFA retur ns
oneselfsufficient and discards the untried states. (A POSIX NFA is another story
that we’ll get to shortly.)

NFA, DFA, and POSIX 177

29 April 2003 09:21

178 Chapter 4: The Mechanics of Expression Processing

On the other hand, a DFA finds the longer oneselfsufficient. An NFA would
also find that match if the initial !(self)? " wer e to somehow go unmatched, as that
would leave !(selfsufficient)? " then able to match. A Traditional NFA doesn’t
do that, but the DFA finds it nevertheless, since it’s the longest possible match
available to the current attempt. It can do this because it keeps track of all matches
simultaneously, and knows at all times about all possible matches.

I chose this silly example because it’s easy to talk about, but I want you to realize
that this issue is important in real life. For example, consider trying to match con-
tinuation lines. It’s not uncommon for a data specification to allow one logical line
to extend across multiple real lines if the real lines end with a backslash before the
newline. As an example, consider the following:

SRC=array.c builtin.c eval.c field.c gawkmisc.c io.c main.c \
missing.c msg.c node.c re.c version.c

You might normally want to use !ˆ\w+ = .+ " to match this kind of “var = value”
assignment line, but this regex doesn’t consider the continuation lines. (I’m assum-
ing for the example that the tool’s dot won’t match a newline.) To match continua-
tion lines, you might consider appending !(\\\n.+)+ " to the regex, yielding
!ˆ\w+ = .+(\\\n.+)+ ". Ostensibly, this says that any number of additional logical
lines are allowed so long as they each follow an escaped newline. This seems rea-
sonable, but it will never work with a traditional NFA. By the time the original ! .+ "

has reached the newline, it has already passed the backslash, and nothing in what
was added forces it to backtrack (+ 152). Yet, a DFA finds the longer multiline
match if available, simply because it is, indeed, the longest.

If you have lazy quantifiers available, you might consider using them, such as with
!ˆ\w+ = .,?(\\ \n .,?)+ ". This allows the escaped newline part to be tested each
time before the first dot actually matches anything, so the thought is that the !\\"

then gets to match the backslash before the newline. Again, this won’t work. A
lazy quantifier actually ends up matching something optional only when forced to
do so, but in this case, everything after the ! = " is optional, so there’s nothing to
force the lazy quantifiers to match anything. Our lazy example matches only
‘SRC=’, so it’s certainly not the answer.

Ther e ar e other approaches to solving this problem; we’ll continue with this exam-
ple in the next chapter (+ 186).

POSIX and the Longest-Leftmost Rule
The POSIX standard requir es that if you have multiple possible matches that start at
the same position, the one matching the most text must be the one retur ned.

The POSIX standard document uses the phrase “longest of the leftmost.” It doesn’t
say you have to use a DFA, so if you want to use an NFA when creating a POSIX

29 April 2003 09:21

tool, what’s a programmer to do? If you want to implement a POSIX NFA, you’d
have to find the full oneselfsufficient and all the continuation lines, despite
these results being “unnatural” to your NFA.

A Traditional NFA engine stops with the first match it finds, but what if it were to
continue to try options (states) that might remain? Each time it reached the end of
the regex, it would have another plausible match. By the time all options are
exhausted, it could simply report the longest of the plausible matches it had
found. Thus, a POSIX NFA.

An NFA applied to the first example would, in matching !(self)? ", have saved an
option noting that it could pick up matching !one(self)?(selfsufficient)? " at
oneselfsufficient. Even after finding the oneselfsufficient that a Tradi-
tional NFA stops at, a POSIX NFA continues to exhaustively check the remaining
options, eventually realizing that yes, there is a way to match the longer (and in
fact, longest) oneselfsufficient.

In Chapter 7, we’ll see a method to trick Perl into mimicking POSIX semantics, hav-
ing it report the longest match (+ 335).

Speed and Efficienc y
If efficiency is an issue with a Traditional NFA (and with backtracking, believe me,
it can be), it is doubly so with a POSIX NFA since there can be so much more back-
tracking. A POSIX NFA engine really does have to try every possible permutation of
the regex, every time. Examples in Chapter 6 show that poorly written regexes can
suf fer extr emely sever e per formance penalties.

DFA efficienc y

The text-directed DFA is a really fantastic way around all the inefficiency of back-
tracking. It gets its matching speed by keeping track of all possible ongoing
matches at once. How does it achieve this magic?

The DFA engine spends extra time and memory when it first sees the regular
expr ession, befor e any match attempts are made, to analyze the regular expression
mor e thor oughly (and in a differ ent way) from an NFA. Once it starts actually
attempting a match, it has an internal map describing “If I read such-and-such a
character now, it will be part of this-and-that possible match.” As each character of
the string is checked, the engine simply follows the map.

Building that map can sometimes take a fair amount of time and memory, but
once it is done for any particular regular expression, the results can be applied to
an unlimited amount of text. It’s sort of like charging the batteries of your electric
car. First, your car sits in the garage for a while, plugged into the wall, but when
you actually use it, you get consistent, clean power.

NFA, DFA, and POSIX 179

29 April 2003 09:21

180 Chapter 4: The Mechanics of Expression Processing

NFA: Theor y Versus Reality
The true mathematical and computational meaning of “NFA” is dif ferent from
what is commonly called an “NFA regex engine.” In theory, NFA and DFA
engines should match exactly the same text and have exactly the same fea-
tur es. In practice, the desire for richer, mor e expr essive regular expressions
has caused their semantics to diverge. An example is the support for
backr efer ences.

The design of a DFA engine precludes backrefer ences, but it’s a relatively
small task to add backrefer ence support to a true (mathematically speaking) NFA
engine. In doing so, you create a more power ful tool, but you also make it
decidedly nonr egular (mathematically speaking). What does this mean? At most,
that you should probably stop calling it an NFA, and start using the phrase
“nonr egular expr essions,” since that describes (mathematically speaking) the new
situation. No one has actually done this, so the name “NFA” has lingered,
even though the implementation is no longer (mathematically speaking) an NFA.

What does all this mean to you, as a user? Absolutely nothing. As a user, you
don’t care if it’s regular, nonr egular, unr egular, irr egular, or incontinent. So
long as you know what you can expect from it (something this chapter
shows you), you know all you need to care about.

For those wishing to learn mor e about the theory of regular expressions, the
classic computer-science text is chapter 3 of Aho, Sethi, and Ullman’s Com-
pilers — Principles, Techniques, and Tools (Addison-Wesley, 1986), commonly
called “The Dragon Book” due to the cover design. More specifically, this is
the “red dragon.” The “green dragon” is its predecessor, Aho and Ullman’s
Principles of Compiler Design.

The work done when a regex is first seen (the once-per-r egex overhead) is called
compiling the regex. The map-building is what a DFA does. An NFA also builds an
inter nal repr esentation of the regex, but an NFA’s repr esentation is like a mini pro-
gram that the engine then executes.

Summar y: NFA and DFA in Comparison
Both DFA and NFA engines have their good and bad points.

DFA versus NFA: Differences in the pre-use compile

Befor e applying a regex to a search, both types of engines compile the regex to an
inter nal for m suited to their respective match algorithms. An NFA compile is gener-
ally faster, and requir es less memory. There’s no real differ ence between a Tradi-
tional and POSIX NFA compile.

29 April 2003 09:21

DFA versus NFA: Differences in match speed

For simple literal-match tests in “normal” situations, both types match at about the
same rate. A DFA’s match speed is generally unrelated to the particular regex, but
an NFA’s is directly related.

A Traditional NFA must try every possible permutation of the regex before it can
conclude that there’s no match. This is why I spend an entire chapter (Chapter 6)
on techniques to write NFA expr essions that match quickly. As we’ll see, an NFA

match can sometimes take forever. If it’s a Traditional NFA, it can at least stop if
and when it finds a match.

A POSIX NFA, on the other hand, must always try every possible permutation of the
regex to ensure that it has found the longest possible match, so it generally takes
the same (possibly very long) amount of time to complete a successful match as it
does to confirm a failur e. Writing efficient expressions is doubly important for a
POSIX NFA.

In one sense, I speak a bit too strongly, since optimizations can often reduce the
work needed to retur n an answer. We’ve already seen that an optimized engine
doesn’t try !ˆ "-anchor ed regexes beyond the start of the string (+ 149), and we’ll
see many more optimizations in Chapter 6.

The need for optimizations is less pressing with a DFA since its matching is so fast
to begin with, but for the most part, the extra work done during the DFA’s pre-use
compile affords better optimizations than most NFA engines take the trouble to do.

Moder n DFA engines often try to reduce the time and memory used during the
compile by postponing some work until a match is attempted. Often, much of the
compile-time work goes unused because of the nature of the text actually
checked. A fair amount of time and memory can sometimes be saved by postpon-
ing the work until it’s actually needed during the match. (The technobabble term
for this is lazy evaluation.) It does, however, create cases where ther e can be a
relationship among the regex, the text being checked, and the match speed.

DFA versus NFA: Differences in what is matched

A DFA (or anything POSIX) finds the longest leftmost match. A Traditional NFA

might also, or it might find something else. Any individual engine always treats the
same regex/text combination in the same way, so in that sense, it’s not “random,”
but other NFA engines may decide to do slightly differ ent things. Virtually all Tradi-
tional NFA engines I’ve seen work exactly the way I’ve described here, but it’s not
something absolutely guaranteed by any standard.

NFA, DFA, and POSIX 181

29 April 2003 09:21

182 Chapter 4: The Mechanics of Expression Processing

DFA versus NFA: Differences in capabilities

An NFA engine can support many things that a DFA cannot. Among them are:

• Capturing text matched by a parenthesized subexpression. Related features are
backr efer ences and after-match information saying wher e in the matched text
each parenthesized subexpression matched.

• Lookar ound, and other complex zero-width assertions† (+ 132).

• Non-gr eedy quantifiers and ordered alternation. A DFA could easily support a
guaranteed shortest overall match (although for whatever reason, this option
never seems to be made available to the user), but it cannot implement the
local laziness and ordered alternation that we’ve talked about.

• Possessive quantifiers (+ 140) and atomic grouping (+ 137).

DFA versus NFA: Differences in ease of implementation

Although they have limitations, simple versions of DFA and NFA engines are easy
enough to understand and to implement. The desire for efficiency (both in time
and memory) and enhanced features drives the implementation to greater and
gr eater complexity.

With code length as a metric, consider that the NFA regex support in the Version 7
(January 1979) edition of ed was less than 350 lines of C code. (For that matter,
the entir e source for gr ep was a scant 478 lines.) Henry Spencer’s 1986 freely avail-
able implementation of the Version 8 regex routines was almost 1,900 lines of C,
and Tom Lord’s 1992 POSIX NFA package rx (used in GNU sed, among other tools)
is a stunning 9,700 lines.

For DFA implementations, the Version 7 egr ep regex engine was a bit over 400
lines long, while Henry Spencer’s 1992 full-featured POSIX DFA package is over
4,500 lines long.

To provide the best of both worlds, GNU egr ep Version 2.4.2 utilizes two fully
functional engines (about 8,900 lines of code), and Tcl’s hybrid DFA/NFA engine
(see the sidebar on the facing page) is about 9,500 lines of code.

Some implementations are simple, but that doesn’t necessarily mean they are short
on features. I once wanted to use regular expressions for some text processing in
Pascal. I hadn’t used Pascal since college, but it still didn’t take long to write a sim-
ple NFA regex engine. It didn’t have a lot of bells and whistles, and wasn’t built for
maximum speed, but the flavor was relatively full-featured and was quite useful.

† lex has trailing context, which is exactly the same thing as zero-width positive lookahead at the end
of the regex, but it can’t be generalized and put to use for embedded lookahead.

29 April 2003 09:21

DFA Speed with NFA Capabilities: Regex Nir vana?
I’ve said several times that a DFA can’t provide capturing parentheses or
backr efer ences. This is quite true, but it certainly doesn’t preclude hybrid
appr oaches that mix technologies in an attempt to reach regex nirvana. The
sidebar on page 180 told how NFAs have diverged from the theoretical
straight and narrow in search of more power, and it’s only natural that the
same happens with DFAs. A DFA’s construction makes it more dif ficult, but
that doesn’t mean impossible.

GNU gr ep takes a simple but effective approach. It uses a DFA when possible,
reverting to an NFA when backrefer ences ar e used. GNU awk does something
similar— it uses GNU gr ep ’s fast shortest-leftmost DFA engine for simple “does
it match” checks, and reverts to a differ ent engine for checks where the
actual extent of the match must be known. Since that other engine is an NFA,
GNU awk can conveniently offer capturing parentheses, and it does via its
special gensub function.

Tcl’s regex engine is a true hybrid, custom built by Henry Spencer (whom
you may remember having played an important part in the early develop-
ment and popularization of regular expressions + 88). The Tcl engine some-
times appears to be an NFA — it has lookaround, capturing parentheses, back-
refer ences, and lazy quantifiers. Yet, it has true POSIX longest-leftmost match
(+ 177), and doesn’t suffer from some of the NFA pr oblems that we’ll see in
Chapter 6. It really seems quite wonderful.

Curr ently, this engine is available only to Tcl, but Henry tells me that it’s on
his to-do list to break it out into a separate package that can be used by
others.

Summar y
If you understood everything in this chapter the first time you read it, you proba-
bly didn’t need to read it in the first place. It’s heady stuff, to say the least. It took
me quite a while to understand it, and then longer still to understand it. I hope
this one concise presentation makes it easier for you. I’ve tried to keep the expla-
nation simple without falling into the trap of oversimplification (an unfortunately
all-too-common occurrence which hinders true understanding). This chapter has a
lot in it, so I’ve included a lot of page refer ences in the following summary, for
when you’d like to quickly check back on something.

Ther e ar e two underlying technologies commonly used to implement a regex
match engine, “regex-dir ected NFA” (+ 153) and “text-directed DFA” (+ 155). The
abbr eviations ar e spelled out on page 156.

Summar y 183

29 April 2003 09:21

184 Chapter 4: The Mechanics of Expression Processing

Combine the two technologies with the POSIX standard (+ 178), and for practical
purposes, there are thr ee types of engines:

• Traditional NFA (gas-guzzling, power-on-demand)
• POSIX NFA (gas-guzzling, standard-compliant)
• DFA (POSIX or not) (electric, steady-as-she-goes)

To get the most out of a utility, you need to understand which type of engine it
uses, and craft your regular expressions appropriately. The most common type is
the Traditional NFA, followed by the DFA. Table 4-1 (+ 145) lists a few common
tools and their engine types, and the section “Testing the Engine Type” (+ 146)
shows how you can test the type yourself.

One overriding rule regardless of engine type: matches starting sooner take prece-
dence over matches starting later. This is due to how the engine’s “transmission”
tests the regex at each point in the string (+ 148).

For the match attempt starting at any given spot:

DFA Te xt-Directed Engines
Find the longest possible match, period. That’s it. End of discussion (+ 177).
Consistent, very fast (+ 179), and boring to talk about.

NFA Regex-Directed Engines
Must “work through” a match. The soul of NFA matching is backtracking
(+ 157, 162). The metacharacters control the match: the standard quantifiers
(star and friends) are gr eedy (+ 151), while others may be lazy or possessive
(+ 169). Alternation is ordered (+ 174) in a traditional NFA, but greedy with a
POSIX NFA.

POSIX NFA Must find the longest match, period. But, it’s not boring, as you
must worry about efficiency (the subject of Chapter 6).

Tr aditional NFA Is the most expressive type of regex engine, since you can
use the regex-dir ected natur e of the engine to craft exactly the match
you want.

Understanding the concepts and practices covered in this chapter is the foundation
for writing correct and efficient regular expressions, which just happens to be the
subject of the next two chapters.

29 April 2003 09:21

