The Mechanics
of Expression
Processing

The previous chapter started with an analogy between cars and regular expres-
sions. The bulk of the chapter discussed features, regex flavors, and other “glossy
brochure” issues of regular expressions. This chapter continues with that analogy,
talking about the all-important regular-expression engine, and how it goes about
its work.

Why would you care how it works? As we’ll see, there are several types of regex
engines, and the type most commonly used —the type used by Perl, Tcl, Python,
the .NET languages, Ruby, PHP, all Java packages I've seen, and more —works in
such a way that how you craft your expression can influence whether it can match
a particular string, where in the string it matches, and how quickly it finds the
match or reports the failure. If these issues are important to you, this chapter is
for you.

Start Your Engines/

Let’s see how much I can milk this engine analogy. The whole point of having an
engine is so that you can get from Point A to Point B without doing much work.
The engine does the work for you so you can relax and enjoy the sound system.
The engine’s primary task is to turn the wheels, and how it does that isn’t really a
concern of yours. Or is it?

143

144 Chapter 4: The Mechanics of Expression Processing

Two Kinds of Engines

Well, what if you had an electric car? They've been around for a long time, but
they aren’t as common as gas cars because they’re hard to design well. If you had
one, though, you would have to remember not to put gas in it. If you had a gaso-
line engine, well, watch out for sparks! An electric engine more or less just runs,
but a gas engine might need some babysitting. You can get much better perfor-
mance just by changing little things like your spark plug gaps, air filter, or brand of
gas. Do it wrong and the engine’s performance deteriorates, or, worse yet, it stalls.

Each engine might do its work differently, but the end result is that the wheels
turn. You still have to steer properly if you want to get anywhere, but that’s an
entirely different issue.

New Standards

Let’s stoke the fire by adding another variable: the California Emissions Standards.}
Some engines adhere to California’s strict pollution standards, and some engines
don’t. These aren’t really different kinds of engines, just new variations on what'’s
already around. The standard regulates a result of the engine’s work, the emis-
sions, but doesn’t say anything about how the engine should go about achieving
those cleaner results. So, our two classes of engine are divided into four types:
electric (adhering and non-adhering) and gasoline (adhering and non-adhering).

Come to think of it, T bet that an electric engine can qualify for the standard with-
out much change —the standard just “blesses” the clean results that are already par
for the course. The gas engine, on the other hand, needs some major tweaking
and a bit of re-tooling before it can qualify. Owners of this kind of engine need to
pay particular care to what they feed it—use the wrong kind of gas and you're in
big trouble.

The impact of standards

Better pollution standards are a good thing, but they require that the driver exer-
cise more thought and foresight (well, at least for gas engines). Frankly, however,
the standard doesn’t impact most people since all the other states still do their own
thing and don’t follow California’s standard.

So, you realize that these four types of engines can be classified into three groups
(the two kinds for gas, and electric in general). You know about the differences,
and that in the end they all still turn the wheels. What you don’t know is what the
heck this has to do with regular expressions! More than you might imagine.

t California has rather strict standards regulating the amount of pollution a car can produce. Because
of this, many cars sold in America come in “California” and “non-California” models.

Start Your Engines! 145

Regex Engine Types

There are two fundamentally different types of regex engines: one called “DFA”
(the electric engine of our story) and one called “NFA” (the gas engine). The
details of what NFA and DFA mean follow shortly (s 156), but for now just con-
sider them names, like Bill and Ted. Or electric and gas.

Both engine types have been around for a long time, but like its gasoline counter-
part, the NFA type seems to be used more often. Tools that use an NFA engine
include the .NET languages, Ruby, Perl, Python, GNU Emacs, ed, sed, PHP, vi, most
versions of grep, and even a few versions of egrep and awk. On the other hand, a
DFA engine is found in almost all versions of egrep and awk, as well as Jex and
flex. Some systems have a multi-engine hybrid system, using the most appropriate
engine for the job (or even one that swaps between engines for different parts of
the same regex, as needed to get the best combination of features and speed). Ta-
ble 4-1 lists a few common programs and the regex engine that most versions use.
If your favorite program is not in the list, the section “Testing the Engine Type” on
the next page can help you find out which it is.

Table 4-1: Some Tools and Their Regex Engines

Engine type Programs
DFA awk (most versions), egrep (most versions), flex, lex, MySQL, Procmail
Traditional NFA GNU Emacs, Java, grep (most versions), less, more, .NET languages,

PCRE library, Perl, PHP (pcre routines), Python, Ruby,
sed (most versions), vi

POSIX NFA mawk, Mortice Kern Systems’ utilities, GNU Emacs (when requested)

Hybrid NFA/DFA GNU awk, GNU grep/egrep, Tcl

As Chapter 3 illustrated, 20 years of development with both DFAs and NFAs
resulted in a lot of needless variety. Things were dirty. The POSIX standard came
in to clean things up by clearly specifying not only which metacharacters and fea-
tures an engine should support, as mentioned in the previous chapter, but also
exactly the results you could expect from them. Superficial details aside, the DFAs
(our electric engines) were already well suited to adhere to this new standard, but
the kind of results an NFA traditionally provided were different, so changes were
needed. As a result, broadly speaking, there are three types of regex engines:

e DFA (POSIX or not—similar either way)

e Traditional NFA (most common: Perl, .NET, Java, Python, ...)

e POSIX NFA

Here, we use “POSIX” to refer to the match semantics—the expected operation of
a regex that the POSIX standard specifies (which we’ll get to later in this chapter).
Don’t confuse this use of “POSIX” with uses surrounding regex features introduced

146 Chapter 4: The Mechanics of Expression Processing

in that same standard (e 125). Many programs support the features without sup-
porting the full match semantics.

Old (and minimally featured) programs like egrep, awk, and lex were normally
implemented with the electric DFA engine, so the new standard primarily just con-
firmed the status quo —no big changes. However, there were some gas-powered
versions of these programs which had to be changed if they wanted to be POSIX-
compliant. The gas engines that passed the California Emission Standards tests
(POSIX NFA) were fine in that they produced results according to the standard, but
the necessary changes only increased how fickle they were to proper tuning.
Where before you might get by with slightly misaligned spark plugs, you now
have absolutely no tolerance. Gasoline that used to be “good enough” now causes
knocks and pings. But, so long as you know how to maintain your baby, the
engine runs smoothly and cleanly.

From the Department of Redundancy Department

At this point, I'll ask you to go back and review the story about engines. Every
sentence there rings with some truth about regular expressions. A second reading
should raise some questions. Particularly, what does it mean that an electric DFA
regex engine more or less “just runs?” What affects a gas-powered NFA? How can I
tune my regular expressions to run as I want on an NFA? What special concerns
does an emissions-controlled POSIX NFA have? What's a “stalled engine” in the
regex world?

Testing the Engine Type

Because the type of engine used in a tool influences the type of features it can
offer, and how those features appear to work, we can often learn the type of
engine a tool has merely by checking to see how it handles a few test expressions.
(After all, if you can’t tell the difference, the difference doesn’t matter.) At this
point in the book, I wouldn’t expect you to understand why the following test
results indicate what they do, but T want to offer these tests now so that if your
favorite tool is not listed in Table 4-1, you can investigate before continuing with
this and the subsequent chapters.

Traditional NFA or not?

The most commonly used engine is a Traditional NFA, and spotting it is easy. First,
are lazy quantifiers (s 140) supported? If so, it's almost certainly a Traditional NFA.
As we'll see, lazy quantifiers are not possible with a DFA, nor would they make
any sense with a POSIX NFA. However, to make sure, simply apply the regex
nfa|nfa-not, to the string ‘nfa-not’—if only ‘nfa’ matches, it’s a Traditional NFA.
If the entire ‘nfa-not’ matches, it’s either a POSIX NFA or a DFA.

Match Basics 147

DFA or POSIX NFA?

Differentiating between a POSIX NFA and a DFA is sometimes just as simple. Cap-
turing parentheses and backreferences are not supported by a DFA, so that can be
one hint, but there are systems that are a hybrid mix between the two engine
types, and so may end up using a DFA if there are no capturing parentheses.

Here’s a simple test that can tell you a lot. Apply X(.+)+X to a string like
=XX======================", as with this egrep command:

echo =XX | egrep 'X(.+)+X’

If it takes a long time to finish, it’s an NFA (and if not a Traditional NFA as per the
test in the previous section, it must be a POSIX NFA). If it finishes quickly, it’s either
a DFA or an NFA with some advanced optimization. Does it display a warning mes-
sage about a stack overflow or long match aborted? If so, it’s an NFA.

Match Basics

Before looking at the differences among these engine types, let’s first look at their
similarities. Certain aspects of the drive train are the same (or for all practical pur-
poses appear to be the same), so these examples can cover all engine types.

About the Examples

This chapter is primarily concerned with a generic, full-function regex engine, so
some tools won’t support exactly everything presented. In my examples, the dip-
stick might be to the left of the oil filter, while under your hood it might be behind
the distributor cap. Your goal is to understand the concepts so that you can drive
and maintain your favorite regex package (and ones you find interest in later).

I'll continue to use Perl’s notation for most of the examples, although I'll occasion-
ally show others to remind you that the notation is superficial and that the issues
under discussion transcend any one tool or flavor. To cut down on wordiness
here, T'll rely on you to check Chapter 3 (s 113) if I use an unfamiliar construct.

This chapter details the practical effects of how a match is carried out. It would be
nice if everything could be distilled down to a few simple rules that could be
memorized without needing to understand what is going on. Unfortunately, that’s
not the case. In fact, with all this chapter offers, I identify only two all-encompass-
ing rules:

1. The match that begins earliest (leftmost) wins.

2. The standard quantifiers ('x, '+, [?, and {m, n}) are greedy.

We'll look at these rules, their effects, and much more throughout this chapter.
Let’s start by diving into the details of the first rule.

148 Chapter 4: The Mechanics of Expression Processing

Rule 1: The Maich That Begins Earliest Wins

This rule says that any match that begins earlier (Ieftmost) in the string is always
preferred over any plausible match that begins later. This rule doesn’t say anything
about how long the winning match might be (we’ll get into that shortly), merely
that among all the matches possible anywhere in the string, the one that begins
leftmost in the string is chosen. Actually, since more than one plausible match can
start at the same earliest point, perhaps the rule should read “a match...” instead of
“the match...” but that sounds odd.

Here’s how the rule comes about: the match is first attempted at the very begin-
ning of the string to be searched (just before the first character). “Attempted”
means that every permutation of the entire (perhaps complex) regex is tested start-
ing right at that spot. If all possibilities are exhausted and a match is not found,
the complete expression is re-tried starting from just before the second character.
This full retry occurs at each position in the string until a match is found. A “no
match” result is reported only if no match is found after the full retry has been
attempted at each position all the way to the end of the string (just after the last
character).

Thus, when trying to match /ORA, against FLORAL, the first attempt at the start of the
string fails (since IORA, can’t match FLO). The attempt starting at the second charac-
ter also fails (it doesn’t match LOR either). The attempt starting at the third posi-
tion, however, does match, so the engine stops and reports the match: FLORAL.

If you didn’t know this rule, results might sometimes surprise you. For example,
when matching lcat, against
The dragging belly indicates your cat is too fat

the match is in indicates, not at the word cat that appears later in the line. This
word cat could match, but the cat in indicates appears earlier in the string, so
it is the one matched. For an application like egrep, the distinction is irrelevant
because it cares only whetber there is a match, not where the match might be. For
other uses, such as with a search-and-replace, the distinction becomes paramount.
Here’s a (hopefully simple) quiz: where does 'fat|cat|belly|your) match in the
string ‘The dragging belly indicates your cat is too fat? ¢ Turn the
page to check your answer.

The “transmission” and the bump-along

It might help to think of this rule as the car’s transmission, connecting the engine
to the drive train while adjusting for the gear you're in. The engine itself does the
real work (turning the crank); the transmission transfers this work to the wheels.

Match Basics 149

The transmission’s main work: the bump-along

If the engine can’t find a match starting at the beginning of the string, it's the
transmission that bumps the regex engine along to attempt a match at the next
position in the string, and the next, and the next, and so on. Usually. For instance,
if a regex begins with a start-of-string anchor, the transmission can realize that any
bump-along would be futile, for only the attempt at the start of the string could
possibly be successful. This and other internal optimizations are discussed in
Chapter 6.

Engine Pieces and Parts

An engine is made up of parts of various types and sizes. You can’t possibly hope
to truly understand how the whole thing works if you don’t know much about the
individual parts. In a regex, these parts are the individual units —literal characters,
quantifiers (star and friends), character classes, parentheses, and so on, as
described in Chapter 3 (s 113). The combination of these parts (and the engine’s
treatment of them) makes a regex what it is, so looking at ways they can be com-
bined and how they interact is our primary interest. First, let’s take a look at some
of the individual parts:
Literal text (e.g., a \» ! K¢ ..)
With a literal, non-metacharacter like 'z, or 1, the match attempt is simply
“Does this literal character match the current text character?” If your regex is
only literal text, such as lusa, it is treated as “lu; and then s and then la.” It’s
a bit more complicated if you have the engine do a case-insensitive match,
where by matches B and vice-versa, but it’s still pretty straightforward. (With
Unicode, there are a few additional twists s 109.)

Character classes, dot, Unicode properties, and the like
Matching dot, character classes, Unicode properties, and the like (e 117) is
usually a simple matter: regardless of the length of the character class, it still
matches just one character.’

Dot is just a shorthand for a large character class that matches almost any
character (s 110), so its actions are simple, as are the other shorthand conve-
niences such as \w, \w, and \d.

Capturing parentheses
Parentheses used only for capturing text (as opposed to those used for
grouping) don’t change how the match is carried out.

1 Actually, as we saw in the previous chapter (s 126), a POSIX collating sequence can match multiple
characters, but this is not common. Also, certain Unicode characters can match multiple characters
when applied in a case-insensitive manner (s 109), although most implementations do not sup-
port this.

150 Chapter 4: The Mechanics of Expression Processing

Quiz Answer

& Answer to the question on page 148.

Remember, the regex is tried completely each time, so 'fat|cat|belly|your
matches ‘The dragging belly indicates your cat is too fat’ rather
than fat, even though Ifat, is listed first among the alternatives.

Sure, the regex could conceivably match fat and the other alternatives, but
since they are not the earliest possible match (the match starting furthest to
the left), they are not the one chosen. The entire regex is attempted com-
pletely from one spot before moving along the string to try again from the
next spot, and in this case that means trying each alternative 'fat, 'cat,
belly, and lyour) at each position before moving on.

Anchors (e.g., "] Nz [(?<=\d) ...)
There are two basic types of anchors: simple ones (%, $, \G, \b, ... = 127)
and complex ones (lookahead and lookbehind s 132). The simple ones are
indeed simple in that they test either the quality of a particular location in the
target string (*, \Z, ...), or compare two adjacent characters (\<, \b, ...). On
the other hand, the lookaround constructs can contain arbitrary sub-expres-
sions, and so can be arbitrarily complex.

No “electric” parentbeses, backreferences, or lazy quantifiers

I'd like to concentrate here on the similarities among the engines, but as foreshad-
owing of what’s to come in this chapter, I'll point out a few interesting differences.
Capturing parentheses (and the associated backreferences and $1 type functional-
ity) are like a gas additive —they affect a gasoline (NFA) engine, but are irrelevant
to an electric (DFA) engine. The same thing applies to lazy quantifiers. The way a
DFA engine works completely precludes these concepts.! This explains why tools
developed with DFAs don’t provide these features. You'll notice that awk, /lex, and
egrep don’t have backreferences or any $1 type functionality.

You might, however, notice that GNU’s version of egrep does support backrefer-
ences. It does so by having two complete engines under the hood! It first uses a
DFA engine to see whether a match is likely, and then uses an NFA engine (which
supports the full flavor, including backreferences) to confirm the match. Later in
this chapter, we’ll see why a DFA engine can’t deal with backreferences or captur-
ing, and why anyone ever would want to use such an engine at all. (It has some
major advantages, such as being able to match very quickly.)

t This does not mean that there can’t be some mixing of technologies to try to get the best of both
worlds. This is discussed in a sidebar on page 183.

Match Basics 151

Rule 2: The Standard Quantifiers Are Greedy

So far, we have seen features that are quite straightforward. They are also rather
boring—you can’t do much without involving more-powerful metacharacters such
as star, plus, alternation, and so on. Their added power requires more information
to understand them fully.

First, you need to know that the standard quantifiers (?, *, +, and {min, max}) are
greedy. When one of these governs a subexpression, such as la; in la?, the (expr),
in "(expr) *, or [0-91; in '[0-9]+, there is a minimum number of matches that are
required before it can be considered successful, and a maximum number that it
will ever attempt to match. This has been mentioned in earlier chapters — what’s
new here concerns the rule that they always attempt to match as much as possi-
ble. (Some flavors provide other types of quantifiers, but this section is concerned
only with the standard, greedy ones.)

To be clear, the standard quantifiers settle for something less than the maximum
number of allowed matches if they have to, but they always attempt to match as
many times as they can, up to that maximum allowed. The only time they settle
for anything less than their maximum allowed is when matching too much ends
up causing some later part of the regex to fail. A simple example is using
\b\w+s\b, to match words ending with an ‘s’, such as ‘regexes’. The \w+ alone is
happy to match the entire word, but if it does, it leaves nothing for the ‘s to
match. To achieve the overall match, the \w+ must settle for matching only
‘regexes’, thereby allowing 's\b, (and thus the full regex) to match.

If it turns out that the only way the rest of the regex can succeed is when the
greedy construct in question matches nothing, well, that's perfectly fine, if zero
matches are allowed (as with star, question, and {0,max} intervals). However, it
turns out this way only if the requirements of some later subexpression force the
issue. It’s because the greedy quantifiers always (or, at least, try to) take more than
they minimally need that they are called greedy.

Greediness has many useful (but sometimes troublesome) implications. It explains,
for example, why [0-9]+ matches the full number in March-1998. Once the ‘1’
has been matched, the plus has fulfilled its minimum requirement, but it’s greedy,
so it doesn’t stop. So, it continues, and matches the ‘998" before being forced to
stop by the end of the string. (Since [0-9]; can’t match the nothingness at the end
of the string, the plus finally stops.)

A subjective example

Of course, this method of grabbing things is useful for more than just numbers.
Let’s say you have a line from an email header and want to check whether it is the
subject line. As we saw in earlier chapters (s 55), you simply use "Subject:.

152 Chapter 4: The Mechanics of Expression Processing

However, if you use ["Subject: - (.*), you can later access the text of the subject
itself via the tool’s after-the-fact parenthesis memory (for example, $1 in Perl).!

Before looking at why ! . matches the entire subject, be sure to understand that
once the "Subject: part matches, you're guaranteed that the entire regular
expression will eventually match. You know this because there’s nothing after
“Subject: - that could cause the expression to fail; I . » can never fail, since the
worst case of “no matches” is still considered successful for star.

So, why do we even bother adding '.x? Well, we know that because star is
greedy, it attempts to match dot as many times as possible, so we use it to “fill”
$1. In fact, the parentheses add nothing to the logic of what the regular expression
matches—in this case we use them simply to capture the text matched by . .

Once ' . % hits the end of the string, the dot isn’'t able to match, so the star finally
stops and lets the next item in the regular expression attempt to match (for even
though the starred dot could match no further, perhaps a subexpression later in
the regex could). Ah, but since it turns out that there is no next item, we reach the
end of the regex and we know that we have a successful match.

Being too greedy

Let’s get back to the concept of a greedy quantifier being as greedy as it can be.
Consider how the matching and results would change if we add another I. x:
“Subject: - (.*).*. The answer is: nothing would change. The initial ' . %, (inside
the parentheses) is so greedy that it matches all the subject text, never leaving any-
thing for the second !. to match. Again, the failure of the second !. * to match
something is not a problem, since the star does not require a match to be success-
ful. Were the second I'. | in parentheses as well, the resulting $2 would always be

empty.

Does this mean that after | . », a regular expression can never have anything that is
expected to actually match? No, of course not. As we saw with the \w+s| example,
it is possible for something later in the regex to force something previously greedy
to give back (that is, relinquish or conceptually “unmatch”) if that’s what is neces-
sary to achieve an overall match.

Let’s consider the possibly useful .+ ([0-9]1[0-91), which finds the /ast two dig-
its on a line, wherever they might be, and saves them to $1. Here’s how it works:
at first, . matches the entire line. Because the following ([0-9]1[0-91), is
required, its initial failure to match at the end of the line, in effect, tells I'. x| “Hey,
you took too much! Give me back something so that I can have a chance to

t This example uses capturing as a forum for presenting greediness, so the example itself is appropri-
ate only for NFAs (because only NFAs support capturing). The lessons on greediness, however, apply
to all engines, including the non-capturing DFA.

Regex-Directed Versus Text-Directed 153

match” Greedy components first try to take as much as they can, but they always
defer to the greater need to achieve an overall match. They’re just stubborn about
it, and only do so when forced. Of course, they’ll never give up something that
hadn’t been optional in the first place, such as a plus quantifier’s first match.

With this in mind, let’s apply ". = ([0-9]1 [0-9]), to ‘about 24 -characters-long’.
Once ' .+ matches the whole string, the requirement for the first [[0-9], to match
forces I'. » to give up ‘g’ (the last thing it had matched). That doesn’t, however,
allow '[0-91], to match, so .« is again forced to relinquish something, this time the
‘n’. This cycle continues 15 more times until | ., finally gets around to giving up ‘4’.

Unfortunately, even though the first [[0-91, can then match that ‘4’, the second still
cannot. So, . * is forced to relinquish once more in an attempt fo find an overall
match. This time | . gives up the ‘2’, which the first [[0-9]; can then match. Now,
the ‘4’ is free for the second '[0-91], to match, and so the entire expression matches
‘about -24 -char-’, with $1 getting 24’.

First come, first served

Consider now using " . x ([0-9]+), ostensibly to match not just the last two digits,
but the last whole number, however long it might be. When this regex is applied
to ‘Copyright 2003.’, what is captured? «» Turn the page to check your answer.

Getting down to the details

I should clear up a few things here. Phrases like “the '.x gives up...” and “the
'10-91] forces...” are slightly misleading. I used these terms because they’re easy to
grasp, and the end result appears to be the same as reality. However, what really
happens behind the scenes depends on the basic engine type, DFA or NFA. So, it’s
time to see what these really are.

Regex-Directed Versus Text-Directed

The two basic engine types reflect a fundamental difference in algorithms available
for applying a regular expression to a string. I call the gasoline-driven NFA engine
“regex-directed,” and the electric-driven DFA “text-directed”

NFA Engine: Regex-Directed

Let’s consider one way an engine might match 'to (nite|knight |night), against
the text -tonight . Starting with the 't;, the regular expression is examined one
component at a time, and the “current text” is checked to see whether it is
matched by the current component of the regex. If it does, the next component is
checked, and so on, until all components have matched, indicating that an overall
match has been achieved.

154 Chapter 4: The Mechanics of Expression Processing

Quiz Answer

& Answer to the question on page 153.

When " .*([0-91+), is applied to ‘Copyright 2003.’, what is captured by
the parentheses?

The desire is to get the last whole number, but it doesn’t work. As before,
.« is forced to relinquish some of what it had matched because the subse-
quent [0-91+, requires a match to be successful. In this example, that means
unmatching the final period and ‘3’, which then allows [0-9] to match.
That’s governed by [+, so matching just once fulfills its minimum, and now
facing .’ in the string, it finds nothing else to match.

Unlike before, though, there’s then nothing further that must match, so ! . | is
not forced to give up the 0 or any other digits it might have matched. Were
.* to do so, the [0-91+ would certainly be a grateful and greedy recipient,
but nope, first come first served. Greedy constructs give up something
they’ve matched only when forced. In the end, $1 gets only ‘3’.

If this feels counter-intuitive, realize that [[0-9]+ is at most one match away
from '[0-91%, which is in the same league as '.x. Substituting that into
~ox ([0-91+), we get .« (.%) as our regex, which looks suspiciously like
the "Subject: - (.#) . example from page 152, where the second ' . * was
guaranteed to match nothing.

With the 'to(nitel|knight|night), example, the first component is 't, which
repeatedly fails until a ‘t’ is reached in the target string. Once that happens, the o
is checked against the next character, and if it matches, control moves to the next
component. In this case, the “next component” is (nite|knight|night); which
really means “nite; or knight, or might.” Faced with three possibilities, the
engine just tries each in turn. We (humans with advanced neural nets between our
ears) can see that if we’'re matching tonight, the third alternative is the one that
leads to a match. Despite their brainy origins (s 85), a regex-directed engine can’t
come to that conclusion until actually going through the motions to check.

Attempting the first alternative, mite, involves the same component-at-a-time
treatment as before: “Try to match n, then /i, then It, and finally 'e.” If this fails,
as it eventually does, the engine tries another alternative, and so on until it
achieves a match or must report failure. Control moves within the regex from com-
ponent to component, so I call it “regex-directed”

Regex-Directed Versus Text-Directed 155

The control benefits of an NFA engine

In essence, each subexpression of a regex in a regex-directed match is checked
independently of the others. Other than backreferences, there’s no interrelation
among subexpressions, except for the relation implied by virtue of being thrown
together to make a larger expression. The layout of the subexpressions and regex
control structures (e.g., alternation, parentheses, and quantifiers) controls an
engine’s overall movement through a match.

Since the regex directs the NFA engine, the driver (the writer of the regular expres-
sion) has considerable opportunity to craft just what he or she wants to happen.
(Chapters 5 and 6 show how to put this to use to get a job done correctly and effi-
ciently.) What this really means may seem vague now, but it will all be spelled
out soon.

DFA Engine: Text-Directed

Contrast the regex-directed NFA engine with an engine that, while scanning the
string, keeps track of all matches “currently in the works” In the tonight exam-
ple, the moment the engine hits t, it adds a potential match to its list of those cur-
rently in progress:

in string ‘ in regex

after -tonight ‘ possible matches: lto (nite|knight|night),

Each subsequent character scanned updates the list of possible matches. After a
few more characters are matched, the situation becomes

in string ‘ in regex

after -tonight ‘ possible matches: 'to (nite|knight |night),

with two possible matches in the works (and one alternative, knight, ruled out).
With the g that follows, only the third alternative remains viable. Once the h and t
are scanned as well, the engine realizes it has a complete match and can return
success.

I call this “text-directed” matching because each character scanned from the text
controls the engine. As in the example, a partial match might be the start of any
number of different, yet possible, matches. Matches that are no longer viable are
pruned as subsequent characters are scanned. There are even situations where a
“partial match in progress” is also a full match. If the regex were 'to ()2, for
example, the parenthesized expression becomes optional, but it’s still greedy, so
it's always attempted. All the time that a partial match is in progress inside those
parentheses, a full match (of ‘to”) is already confirmed and in reserve in case the
longer matches don’t pan out.

156 Chapter 4: The Mechanics of Expression Processing

If the engine reaches a character in the text that invalidates all the matches in the
works, it must revert to one of the full matches in reserve. If there are none, it
must declare that there are no matches at the current attempt’s starting point.

First Thougbts: NFA and DFA in Comparison

If you compare these two engines based only on what I've mentioned so far, you
might conclude that the text-directed DFA engine is generally faster. The regex-
directed NFA engine might waste time attempting to match different subexpres-
sions against the same text (such as the three alternatives in the example).

You would be right. During the course of an NFA match, the same character of the
target might be checked by many different parts of the regex (or even by the same
part, over and over). Even if a subexpression can match, it might have to be
applied again (and again and again) as it works in concert with the rest of the
regex to find a match. A local subexpression can fail or match, but you just never
know about the overall match until you eventually work your way to the end of
the regex. (If T could find a way to include “It’s not over until the fat lady sings”” in
this paragraph, I would.) On the other hand, a DFA engine is deterministic— each
character in the target is checked once (at most). When a character matches, you
don’t know vyet if it will be part of the final match (it could be part of a possible
match that doesn’t pan out), but since the engine keeps track of all possible
matches in parallel, it needs to be checked only once, period.

The two basic technologies behind regular-expression engines have the somewhat
imposing names Nondeterministic Finite Automaton (NFA) and Deterministic Finite
Automaton (DFA). With mouthfuls like this, you see why I stick to just “NFA” and
“DFA” We won't be seeing these phrases spelled out again.t

Consequences to us as users

Because of the regex-directed nature of an NFA, the details of how the engine
attempts a match are very important. As I said before, the writer can exercise a fair
amount of control simply by changing how the regex is written. With the tonight
example, perhaps less work would have been wasted had the regex been written
differently, such as in one of the following ways:

e Ito(ni(ght|te) |knight),
e Itonite|toknight|tonight,
e Ito(k?night|nite)

t 1 suppose I could explain the underlying theory that goes into these names, if I only knew it! As I
hinted, the word deterministic is pretty important, but for the most part the theory is not relevant, so
long as we understand the practical effects. By the end of this chapter, we will.

Backtracking 157

With any given text, these all end up matching exactly the same thing, but in
doing so direct the engine in different ways. At this point, we don’t know enough
to judge which of these, if any, are better than the others, but that's coming soon.

It's the exact opposite with a DFA — since the engine keeps track of all matches
simultaneously, none of these differences in representation matter so long as in
the end they all represent the same set of possible matches. There could be a hun-
dred different ways to achieve the same result, but since the DFA keeps track of
them all simultaneously (almost magically — more on this later), it doesn’t matter
which form the regex takes. To a pure DFA, even expressions that appear as differ-
ent as ‘abc| and faa-a] (b|b{1} |b) ¢ are utterly indistinguishable.

Three things come to my mind when describing a DFA engine:

e DFA matching is very fast.
e DFA matching is very consistent.
e Talking about DFA matching is very boring.

I'll eventually expand on all these points.

The regex-directed nature of an NFA makes it interesting to talk about. NFAs pro-
vide plenty of room for creative juices to flow. There are great benefits in crafting
an expression well, and even greater penalties for doing it poorly. A gasoline
engine is not the only engine that can stall and conk out completely. To get to the
bottom of this, we need to look at the essence of an NFA engine: backtracking.

Backtracking

The essence of an NFA engine is this: it considers each subexpression or compo-
nent in turn, and whenever it needs to decide between two equally viable options,
it selects one and remembers the other to return to later if need be.

Situations where it has to decide among courses of action include anything with a
quantifier (decide whether to try another match), and alternation (decide which
alternative to try, and which to leave for later).

Whichever course of action is attempted, if it’s successful and the rest of the regex
is also successful, the match is finished. If anything in the rest of the regex eventu-
ally causes failure, the regex engine knows it can backtrack to where it chose the
first option, and can continue with the match by trying the other option. This way,
it eventually tries all possible permutations of the regex (or at least as many as
needed until a match is found).

158 Chapter 4: The Mechanics of Expression Processing

A Really Crummy Analogy

Backtracking is like leaving a pile of bread crumbs at every fork in the road. If the
path you choose turns out to be a dead end, you can retrace your steps, giving up
ground until you come across a pile of crumbs that indicates an untried path.
Should that path, too, turn out to be a dead end, you can backtrack further, retrac-
ing your steps to the next pile of crumbs, and so on, until you eventually find a
path that leads to your goal, or until you run out of untried paths.

There are various situations when the regex engine needs to choose between two
(or more) options — the alternation we saw earlier is only one example. Another
example is that upon reaching ' x?-, the engine must decide whether it should
attempt 'x. Upon reaching ' x+-,, however, there is no question about trying to
match x; at least once —the plus requires at least one match, and that’s non-nego-
tiable. Once the first 'x, has been matched, though, the requirement is lifted and it
then must decide to match another 'x. If it decides to match, it must decide if it
will then attempt to match yet another... and another... and so on. At each of these
many decision points, a virtual “pile of crumbs” is left behind as a reminder that
another option (to match or not to match, whichever wasn’t chosen at each point)
remains viable at that point.

A crummy little example

Let’s look at a full example using our earlier 'to (nite|knight |night), regex on
the string ‘hot-tonic-tonight!’ (silly, yes, but a good example). The first com-
ponent, 't is attempted at the start of the string. It fails to match h, so the entire
regex fails at that point. The engine’s transmission then bumps along to retry the
regex from the second position (which also fails), and again at the third. This time
the 't; matches, but the subsequent lo fails to match because the text we're at is
now a space. So, again, the whole attempt fails.

The attempt that eventually starts at --tonic-- is more interesting. Once the to has
been matched, the three alternatives become three available options. The regex
engine picks one to try, remembering the others (“leaving some bread crumbs”) in
case the first fails. For the purposes of discussion, let’s say that the engine first
chooses mite. That expression breaks down to “mj + lij + 't ...)” which gets to
~-tonic- before failing. Unlike the earlier failures, this failure doesn’t mean the
end of the overall attempt because other options — the as-of-yet untried alterna-
tives — still remain. (In our analogy, we still have piles of breadcrumbs we can
return to.) The engine chooses one, we'll say knight, but it fails right away
because 'k doesn’t match ‘n’. That leaves one final option, might, but it too even-
tually fails. Since that was the final untried option, its failure means the failure of
the entire attempt starting at -~ tonic--, so the transmission kicks in again.

Backtracking 159

Once the engine works its way to attempt the match starting at - tonight!, it gets
interesting again. This time, the might, alternative successfully matches to the end
(which means an overall match, so the engine can report success at that point).

Two Important Points on Backtracking

The general idea of how backtracking works is fairly simple, but some of the
details are quite important for real-world use. Specifically, when faced with multi-
ple choices, which choice should be tried first? Secondly, when forced to back-
track, which saved choice should the engine use? The answer to that first question
is this important principle:

In situations where the decision is between “make an attempt” and “skip

an attempt,” as with items governed by quantifiers, the engine always

chooses to first make the attempt for greedy quantifiers, and to first skip

the attempt for lazy (non-greedy) ones.

This has far-reaching repercussions. For starters, it helps explain why the greedy
quantifiers are greedy, but it doesn’t explain it completely. To complete the pic-
ture, we need to know which (among possibly many) saved options to use when
we backtrack. Simply put:

The most recently saved option is the one returned to when a local fail-
ure forces backtracking. They’re used LIFO (last in first out).

This is easily understood in the crummy analogy —if your path becomes blocked,
you simply retrace your steps until you come back across a pile of bread crumbs.
The first you'll return to is the one most recently laid. The traditional analogy for
describing LIFO also holds: like stacking and unstacking dishes, the most-recently
stacked will be the first unstacked.

Saved States

In NFA regular expression nomenclature, the piles of bread crumbs are known as
saved states. A state indicates where matching can restart from, if need be. Tt
reflects both the position in the regex and the point in the string where an untried
option begins. Because this is the basis for NFA matching, let me show the implica-
tions of what I've already said with some simple but verbose examples. If you're
comfortable with the discussion so far, feel free to skip ahead.

160 Chapter 4: The Mechanics of Expression Processing

A maich without backtracking

Let’s look at a simple example, matching lab?c, against abc. Once the 'a; has
matched, the current state of the match is reflected by:

‘ at ‘abc’

matching 'ab? ¢

However, now that b?| is up to match, the regex engine has a decision to make:
should it attempt the b, or skip it?. Well, since ? is greedy, it attempts the match.
But, so that it can recover if that attempt fails or eventually leads to failure, it adds

‘ at ‘abc’

matching lab?¢ ‘

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match in the regex just after the 'b?, picking up in the text from just
before the b (that is, where it is now). Thus, in effect, skipping the b as the ques-
tion mark allows.

Once the engine carefully places that pile of crumbs, it goes ahead and checks the
b. With the example text, it matches, so the new current state becomes:

‘ at ‘abc’ | matching lab?c

The final 'c; matches as well, so we have an overall match. The one saved state is
no longer needed, so it is simply forgotten.

A match after backtracking

Now, if ‘ac’ had been the text to match, everything would have been the same
until the by attempt was made. Of course, this time it wouldn’t match. This means
that the path that resulted from actually attempting the /-2, failed. Since there is a
saved state available to return to, this “local failure” does not mean overall failure.
The engine backtracks, meaning that it takes the most recently saved state as its
new current state. In this case, that would be the

‘ at ‘ac’ ‘ matching lab2¢;

state that had been saved as the untried option before the b, had been attempted.
This time, the lc; and ¢ match up, so the overall match is achieved.

A non-match

Now let’s look at the same expression, but against ‘abX’. Before the b is
attempted, the question mark causes this state to be saved:

‘ at ‘abx’

matching 'ab?c

Backtracking 161

The) matches, but that avenue later turns out to be a dead end because the Ic
fails to match X. The failure results in a backtrack to the saved state. The engine
next tests 'c; against the b that the backtrack effectively “unmatched.” Obviously,
this test fails, too. If there were other saved states, another backtrack would occur,
but since there aren’t any, the overall match at the current starting position is
deemed a failure.

Are we done? Nope. The engine’s transmission still does its “bump along the string
and retry the regex,” which might be thought of as a pseudo-backtrack. The match
restarts at:

‘ at ‘abx’ | matching lab?c

The whole match is attempted again from the new spot, and like before, all paths
lead to failure. After the next two attempts (from abX and abx) similarly fail, over-
all failure is finally reported.

A lazy maich

Let’s look at the original example, but with a lazy quantifier, matching lab??c
against ‘abc’. Once the 'a; has matched, the state of the match is reflected by:

‘ at ‘abc’ | matching lab??c

Now that b??, is next to be applied, the regex engine has a decision to make:
attempt the b, or skip it? Well, since 22 is lazy, it specifically chooses to first skip
the attempt, but, so that it can recover if that attempt fails or eventually leads to
failure, it adds

‘ at ‘apc’

matching labc

to its otherwise empty list of saved states. This indicates that the engine can later
pick up the match by making the attempt of b, in the text from just before the b.
(We know it will match, but the regex engine doesn’t yet know that, or even know
if it will ever need to get as far as making the attempt.) Once the state has been
saved, it goes ahead and continues from after its skip-the-attempt decision:

‘ at ‘abc’
.

matching lab??c; ‘

The /¢ fails to match ‘b’, so indeed the engine must backtrack to its one saved
state:

‘ at ‘apbc’ ‘ matching ‘abc; ‘

Of course, it matches this time, and the subsequent c; matches ‘c’. The same final
match we got with the greedy lab?c is achieved, although via a different path.

162 Chapter 4: The Mechanics of Expression Processing

Backtracking and Greediness

For tools that use this NFA regex-directed backtracking engine, understanding how
backtracking works with your regular expression is the key to writing expressions
that accomplish what you want, and accomplish it quickly. We've seen how ?
greediness and (??) laziness works, so now let’s look at star and plus.

Starn, plus, and their backitracking

If you consider 'x* to be more or less the same as x?x?x?x?x?x? | (or, more
appropriately, '(x (x (x (x--?) ?) ?) ?) ?)), it’s not too different from what we have
already seen. Before checking the item quantified by the star, the engine saves a
state indicating that if the check fails (or leads to failure), the match can pick up
after the star. This is done repeatedly, until an attempt via the star actually
does fail.

Thus, when matching [0-9]+ against ‘a-1234 -num’, once [[0-9], fails to match the
space after the 4, there are four saved states corresponding to locations to which
the plus can backtrack:

a 1234 num

a 1234 num

a 1234 num

a 1234 num
These represent the fact that the attempt of [0-91 had been optional at each of
these positions. When '10-91], fails to match the space, the engine backtracks to the
most recently saved state (the last one listed), picking up at ‘a-1234.num’ in the
text and at [0-91+, in the regex. Well, that’s at the end of the regex. Now that
we're actually there and notice it, we realize that we have an overall match.

Note that ‘a-1234-num’ is not in the list of positions, because the first match using
the plus quantifier is required, not optional. Would it have been in the list had the
regex been '[0-91=? (hint: it’s a trick question) < Turn the page to check your
answer.

Revisiting a fuller example

With our more detailed understanding, let’s revisit the [~ .+ ([0-9]1[0-9]), example
from page 152. This time, instead of just pointing to “greediness” to explain why
the match turns out as it does, we can use our knowledge of NFA mechanics to
explain why in precise terms.

I'll use ‘cA-95472, -USA’ as an example. Once the . x; has successfully matched to
the end of the string, there are a baker’s dozen saved states accumulated from the

t Just for comparison, remember that a DFA doesn’t care much about the form you use to express
which matches are possible; the three examples are identical to a DFA.

More About Greediness and Backtracking 163

star-governed dot matching 13 things that are (if need be) optional. These states
note that the match can pick up in the regex at I".([0-91[0-91), and in the
string at each point where a state was created.

Now that we've reached the end of the string and pass control to the first [0-91,
the match obviously fails. No problem: we have a saved state to try (a baker’s
dozen of them, actually). We backtrack, resetting the current state to the one most
recently saved, to just before where . matched the final A. Skipping that match
(or “unmatching” it, if you like) gives us the opportunity to try that A against the
first '[0-91,. But, it fails.

This backtrack-and-test cycle continues until the engine effectively unmatches the
2, at which point the first [[0-9], can match. The second can’t, however, so we
must continue to backtrack. It's now irrelevant that the first [0-91; matched during
the previous attempt; the backtrack resets the current state to before the first
[0-91. As it turns out, the same backtrack resets the string position to just before
the 7, so the first [[0-9], can match again. This time, so can the second (matching
the 2). Thus, we have a match: ‘cCA-95472, -usa’, with $1 getting ‘72’.

A few observations: first, backtracking entails not only recalculating our position
within the regex and the text, but also maintaining the status of the text being
matched by the subexpression within parentheses. Each backtrack caused the
match to be picked up before the parentheses, at " .« ([0-9]1[0-91),. As far as the
simple match attempt is concerned, this is the same as *.%[0-91[0-9], so I used
phrases such as “picks up before the first '[0-9]1" However, moving in and out of
the parentheses involves updating the status of what $1 should be, which also has
an impact on efficiency.

One final observation that may already be clear to you: something governed by
star (or any of the greedy quantifiers) first matches as much as it can without
regard to what might follow in the regex. In our example, the ! .+, does not magi-
cally know to stop at the first digit, or the second to the last digit, or any other
place until what's governed by the greedy quantifier — the dot — finally fails. We
saw this earlier when looking at how [~ . ([0-9]1+); would never have more than
a single digit matched by the [0-9]+, part (e 153).

More About Greediness
and Backtracking

Many concerns (and benefits) of greediness are shared by both an NFA and a DFA.
(A DFA doesn’t support laziness, which is why we’ve concentrated on greediness
up to this point.) I'd like to look at some ramifications of greediness for both, but
with examples explained in terms of an NFA. The lessons apply to a DFA just as
well, but not for the same reasons. A DFA is greedy, period, and there’s not much

164 Chapter 4: The Mechanics of Expression Processing

Quiz Answer

¢ Answer to the question on page 162.

When matching 10-91* against ‘a-1234 -num’, would ‘a-1234 -num’ be part of
a saved state?

The answer is “no” T posed this question because the mistake is commonly
made. Remember, a component that has star applied can always match. If
that’s the entire regex, it can always match anywhere. This certainly includes
the attempt when the transmission applies the engine the first time, at the
start of the string. In this case, the regex matches at ‘a-1234-num’ and that’s
the end of it—it never even gets as far the digits.

In case you missed this, there’s still a chance for partial credit. Had there
been something in the regex after the 10-9]x that kept an overall match
from happening before the engine got to:

|at'a 1234

matching [[0-9] | ‘

then indeed, the attempt of the ‘1’ also creates the state:

|at'a 1234’ | maiching [0-9]+ |

more to say after that. It’s very easy to use, but pretty boring to talk about. An NFA,
however, is interesting because of the creative outlet its regex-directed nature pro-
vides. Besides lazy quantifiers, there are a variety of extra features an NFA can sup-
port, including lookaround, conditionals, backreferences, and atomic grouping.
And on top of these, an NFA affords the regex author direct control over how a
match is carried out, which can be a benefit when used properly, but it does cre-
ate some efficiency-related pitfalls (discussed in Chapter 6.)

Despite these differences, the match results are often similar. For the next few
pages, T'll talk of both engine types, but describe effects in terms of the regex-
directed NFA. By the end of this chapter, you’ll have a firm grasp of just when the
results might differ, as well as exactly why.

Problems of Greediness

As we saw with the last example, ' . always marches to the end of the line. This
is because I . x just thinks of itself and grabs what it can, only later giving up some-
thing if it is required to achieve an overall match.

+ With a tool or mode where a dot can match a newline, /. applied to strings that contain multiline
data matches through all the logical lines to the end of the whole string.

More About Greediness and BacRtracking 165

Sometimes this can be a real pain. Consider a regex to match text wrapped in
double quotes. At first, you might want to write /" .+", but knowing what we
know about . x|, guess where it matches in:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, since we understand the mechanics of matching, we don’t need to guess,
because we know. Once the initial quote matches, | . x| is free to match, and imme-
diately does so all the way to the end of the string. It backs off (or, perhaps more
appropriately, is backed off by the regex engine) only as much as is needed until
the final quote can match. In the end, it matches

The name "McDonald’s" is said "makudonarudo" in Japanese

which is obviously not the double-quoted string that was intended. This is one
reason why I caution against the overuse of | . as it can often lead to surprising
results if you don’t pay careful attention to greediness.

So, how can we have it match "McDonald’s" only? The key is to realize that we
don’t want “anything” between the quotes, but rather “anything except a quote.” If
we use [[*"]* rather than .« it won’t overshoot the closing quote.

The regex engine’s basic approach with ™ [~"1%" is exactly the same as before.
Once the initial double quote matches, '[~" 1+ gets a shot at matching as much as
it can. In this case, that’s up to the double quote after McDonald's, at which point
it finally stops because '[* "], can’t match the quote. At that point, control moves to
the closing ™. It happily matches, resulting in overall success:

The name "McDonald’s" is said "makudonarudo" in Japanese

Actually, there could be one unexpected change, and that’s because in most fla-
vors, [[* "], can match a newline, while dot doesn’t. If you want to keep the regex
from crossing lines, use [~ "\n],

Multi-Character “Quotes”

In the first chapter, I talked a bit about matching HTML tags, such as the sequence
very that renders the “very” in bold if the browser can do so. Attempting
to match a - sequence seems similar to matching a quoted string, except
the “quotes” in this case are the multi-character sequences and . Like the
quoted string example, multiple sets of “quotes” cause problems if we use I .

Billions and Zillions of suns

With ' . x , the greedy | . x| causes the match in progress to zip to the end of
the line, backtracking only far enough to allow the ' to match, matching the
last on the line instead of the one corresponding to the opening ' at the
start of the match.

166 Chapter 4: The Mechanics of Expression Processing

Unfortunately, since the closing delimiter is more than one character, we can’t
solve the problem with a negated class as we did with double-quoted strings. We
can’t expect something like [~]* to work. A character class repre-
sents only one character and not the full sequence that we want. Don’t let
the apparent structure of [“], fool you. It is just a class to match one charac-
ter—any one except <, >, /, and B. It is the same as, say [["/<>B], and certainly
doesn’t work as an “anything not " construct. (With lookahead, you can insist
that ' not match at a particular point; we’ll see this in action in the next
section.)

Using Lazy Quantifiers

These problems arise because the standard quantifiers are greedy. Some NFAs sup-
port lazy quantifiers (s 140), with *? being the lazy version of x. With that in
mind, let’s apply . *? to:

Billions and Zillions of suns
After the initial has matched, I . x?; immediately decides that since it doesn’t

require any matches, it lazily doesn’t bother trying to perform any. So, it immedi-
ately passes control to the following <;

at ‘.Billions’ 1nau1nng[.*3§/B>‘

The '« doesn’t match at that point, so control returns back to . «?, where it still has
its untried option to attempt a match (to attempt multiple matches, actually). It
begrudgingly does so, with the dot matching the underlined B in - Billions
Again, the *? has the option to match more, or to stop. It's lazy, so it first tries
stopping. The subsequent < still fails, so '.%? has to again exercise its untried
match option. After eight cycles, !.«?; eventually matches Billions, at which
point the subsequent '« (and the whole I subexpression) is finally able to
match:

Billions and Zillions of suns

So, as we've seen, the greediness of star and friends can be a real boon at times,
while troublesome at others. Having non-greedy, lazy versions is wonderful, as
they allow you to do things that are otherwise very difficult (or even impossible).
Still, T've often seen inexperienced programmers use lazy quantifiers in inappropri-
ate situations. In fact, what we’ve just done may not be appropriate. Consider
applying ' . x? to:

Billions and Zillions of suns

It matches as shown, and while I suppose it depends on the exact needs of the sit-
uation, I would think that in this case that match is not desired. However, there’s
nothing about I . x?, to stop it from marching right past the Zillion’s to its .

More About Greediness and BacRtracking 167

This is an excellent example of why a lazy quantifier is often not a good replace-
ment for a negated class. In the " . x" example, using [~"]; as a replacement for
the dot specifically disallows it from marching past a delimiter—a quality we wish
our current regex had.

However, if negative lookahead (vs132) is supported, you can use it to create
something comparable to a negated class. Alone, (?1), is a test that is success-
ful if is not at the current location in the string. Those are the locations that
we want the dot of .? to match, so changing that dot to [((?1) .),
creates a regex that matches where we want it, but doesn’t match where we don’t.
Assembled all together, the whole thing can become quite confusing, so I'll show
it here in a free-spacing mode (== 110) with comments:

 # Match the opening

(# Now, only as many of the following as needed . . .
(?!) # Ifnot. ..
. # ... any character is okay

) *? #

 # ... until the closing delimiter can match

With one adjustment to the lookahead, we can put the quantifier back to a normal
greedy one, which may be less confusing to some:

 # Match the opening

(# Now, only as many of the following as needed . . .
(?! </?B>) # If not , and not . . .
. # ... any character is okay

) * #

 # ... until the closing delimiter can match.

Now, the lookahead prohibits the main body to match beyond as well as
, which eliminates the problem we tried to solve with laziness, so the laziness
can be removed. This expression can still be improved; we’ll see it again during
the discussion on efficiency in Chapter 6 (s 270).

Greediness and Laziness Always Favor a Maitch

Recall the price display example from Chapter 2 (e 51). We'll examine this exam-
ple in detail at a number of points during this chapter, so I'll recap the basic issue:
due to floating-point representation problems, values that should have been
“1.625” or “3.00” were sometimes coming out like “1.62500000002828” and
“3.00000000028822” To fix this, T used
$price =~ s/(\.\d\d[1-9]1?)\dx/$1/;

to lop off all but the first two or three decimal digits from the value stored in the
variable $price. The \.\d\d matches the first two decimal digits regardless,
while the [1-91? matches the third digit only if it is non-zero.

168 Chapter 4: The Mechanics of Expression Processing

I then noted:

Anything matched so far is what we want to keep, so we wrap it in paren-
theses to capture to $1. We can then use $1 in the replacement string. If this
is the only thing that matches, we replace exactly what was matched with
itself —not very useful. However, we go on to match other items outside the
$1 parentheses. They don’t find their way to the replacement string, so the
effect is that they’re removed. In this case, the “to be removed” text is any
extra digits, the '\dx at the end of the regex.

So far so good, but let’s consider what happens when the contents of the variable
$price is already well formed. When it is 27.625, the '(\.\d\d[1-9]1?), part
matches the entire decimal part. Since the trailing \d=, doesn’t match anything, the
substitution replaces the ‘. 625" with ‘. 625" — an effective no-op.

This is the desired result, but wouldn’t it be just a bit more efficient to do the
replacement only when it would have some real effect (that is, do the replacement
only when \dx, actually matches something)? Well, we know how to write “at
least one digit”! Simply replace '\dx; with \d+;

$price =7 s/(\.\d\d[1-9]?)\d+/$1/

With crazy numbers like “1.62500000002828 it still works as before, but with
something such as “9.43” the trailing '\d+ isn’t able to match, so rightly, no substi-
tution occurs. So, this is a great modification, yes? No/ What happens with a three-
digit decimal value like 27.625? We want this value to be left alone, but that’s not
what happens. Stop for a moment to work through the match of 27.625 yourself,
with particular attention to how the ‘5 interacts with the regex.

In hindsight, the problem is really fairly simple. Picking up in the action once
(\.\d\d[1-9]1?)\d+ has matched 27.625, we find that \d+ can’t match. That’s
no problem for the overall match, though, since as far as the regex is concerned,
the match of ‘5’ by [[1-9]; was optional and there is still a saved state to try. This
state allows [1-917?, to match nothing, leaving the 5 to fulfill the must-match-one
requirement of \d+. Thus, we get the match, but not the right match: .625 is
replaced by .62, and the value becomes incorrect.

What if '[1-9]12 were lazy instead? We’d get the same match, but without the inter-
vening “match the 5 but then give it back” steps, since the lazy [[1-9] 2%, first skips
the match attempt. So, laziness is not a solution to this problem.

The Essence of Greediness, Laziness,
and BacRtracking

The lesson of the preceding section is that it makes no difference whether there
are greedy or lazy components to a regex; an overall match takes precedence over
an overall non-match. This includes taking from what had been greedy (or giving
to what had been lazy) if that's what is required to achieve a match, because when

More About Greediness and BacRtracking 169

a “local failure” is hit, the engine keeps going back to the saved states (retracing
steps to the piles of bread crumbs), trying the untested paths. Whether greedily or
lazily, every possible path is tested before the engine admits failure.

The order that the paths are tested is different between greedy and lazy quantifiers
(after all, that’s the whole point of having the two!), but in the end, if no match is
to be found, it’s known only after testing every possible path.

If, on the other hand, there exists just one plausible match, both a regex with a
greedy quantifier and one with a lazy quantifier find that match, although the
series of paths they take to get there may be wildly different. In these cases,
selecting greedy or lazy doesn’t influence what is matched, but merely how long
or short a path the engine takes to get there (which is an efficiency issue, the sub-
ject of Chapter 0).

Finally, if there is more than one plausible match, understanding greediness, lazi-
ness, and backtracking allows you to know which is selected. The . «" example
has three plausible matches:

The name "McDonald’s" is said "makudonarudo" in Japanese

We know that I" . " with the greedy star, selects the longest one, and that I" . x2",
with the lazy star, selects the shortest.

Possessive Quantifiers and Atomic Grouping

The ‘. 625" example on the facing page shows important insights about NFA match-
ing as we know it, and how with that particular example our naive intents were
thwarted. Some flavors do provide tools to help us here, but before looking at
them, it’s absolutely essential to fully understand the preceding section, “The
Essence of Greediness, Laziness, and Backtracking” Be sure to review it if you
have any doubts.

So, continuing with the ‘. 625" example and recalling what we really want to hap-
pen, we know that if the matching can successfully get to the marked position in
(\.\@\d[1-91?)\d+, we never want it to go back. That is, we want [1-9]; to
match if possible, but if it does, we don’t want that match to be given up. Saying it
more forcefully, we would rather have the entire match attempt fail, if need be,
before giving up something matched by the [1-9],. (As you’ll recall, the problem
before when this regex was applied to ‘.625" was that it indeed didn’t fail, but
instead went back to try the remaining skip-me alternative.)

Well, what if we could somehow eliminate that skip-me alternative (eliminate the
state that 7 saves before it makes the attempt to match [1-9]1)? If there was no
state to go back to, a match of [1-9]; wouldn’t be given up. That’'s what we want!
Ah, but if there was no skip-me state to go back to, what would happen if we

170 Chapter 4: The Mechanics of Expression Processing

applied the regex to ‘.50007? The [[1-9], couldn’t match, and in this case, we do
want it to go back and skip the [1-9]; so that the subsequent \d+ can match dig-
its to be removed.

It sounds like we have two conflicting desires, but thinking about it, what we
really want is to eliminate the skip-me alternative only if the match-me alternative
succeeds. That is, if [[1-91 is indeed able to match, we’d like to get rid of the skip-
me saved state so that it is never given up. This is possible, with regex flavors that
support [(?>-); atomic grouping (z 137), or possessive quantifiers like [1-9] 2+
(e 140). We'll look at atomic grouping first.

Atomic grouping with ' (?>---),

In essence, matching within /(?>), carries on normally, but if and when matching
is able to exit the construct (that is, get past its closing parenthesis), all states that
had been saved while within it are thrown away. In practice, this means that once
the atomic grouping has been exited, whatever text was matched within it is now
one unchangeable unit, to be kept or given back only as a whole. All saved states
representing untried options within the parentheses are eliminated, so backtrack-
ing can never undo any of the decisions made within (at least not once they’re
“locked in” when the construct is exited).

So, let’s consider [(\.\d\d(?>[1-91?))\d+. Quantifiers work normally within
atomic grouping, so if [[1-9]; is not able to match, the regex returns to the skip-me
saved state the 7 had left. That allows matching to leave the atomic grouping and
continue on to the \d+. In this case, there are no saved states to flush when con-
trol leaves the atomic grouping (that is, there are no saved states remaining that
had been created within it).

However, when [[1-9], is able to match, matching can exit the atomic grouping,
but this time, the skip-me state is still there. Since it had been created within the
atomic grouping we're now exiting, it is thrown away. This would happen when
matching against both ‘. 625", and, say, ‘.625000’. In the latter case, having elimi-
nated the state turns out not to matter, since the \d+ has the ‘. 625000’ to match,
after which that regex is done. With ‘. 625’ alone, the inability of '\d+, to match has
the regex engine wanting to backtrack, but it can’t since that skip-me alternative
was thrown away. The lack of any state to backtrack to results in the overall match
attempt failing, and ‘. 625’ is left undisturbed as we wish.

The essence of atomic grouping

The section “The Essence of Greediness, Laziness, and Backtracking,” starting on
page 168, makes the important point that neither greediness nor laziness influence
which paths can be checked, but merely the order in which they are checked. If
no match is found, whether by a greedy or a lazy ordering, in the end, every
possible path will have been checked.

More About Greediness and BacRtracking 171

Atomic grouping, on the other hand, is fundamentally different because it actually
eliminates possible paths. Eliminating states can have a number of different conse-
quences, depending on the situation:

e No Effect If a match is reached before one of the eliminated states would
have been called upon, there is no effect on the match. We saw this a moment
ago with the ‘.625000° example. A match was found before the eliminated
state would have come into play.

e Prohibit Match The elimination of states can mean that a match that would
have otherwise been possible now becomes impossible. We saw this with the
.625" example.

e Different Match In some cases, it's possible to get a different match due to
the elimination of states.

e Faster Failure It's possible for the elimination of states to do nothing more
than allow the regex engine, when no match is to be found, report that fact
more quickly. This is discussed right after the quiz.

Here’s a little quiz: what does the construct '(?>.#?); do? What kind of things do
you expect it can match? « Turn the page to check your answer.

Some states may remain. When the engine exits atomic grouping during a
match, only states that had been created while inside the atomic grouping are
eliminated. States that might have been there before still remain after, so the entire
text matched by the atomic subexpression may be unmatched, as a whole, if
backtracking later reverts to one of those previous states.

Faster failures with atomic grouping. Consider "“\w+: applied to ‘Subject’. We
can see, just by looking at it, that it will fail because the text doesn’t have a colon
in it, but the regex engine won’t reach that conclusion until it actually goes
through the motions of checking.

So, by the time ;) is first checked, the \w+ will have marched to the end of the
string. This results in a lot of states—one “skip