
6
Crafting an Efficient Expression

With the regex-dir ected natur e of an NFA engine, as is found in Perl, Java pack-
ages, the .NET languages, Python, and PHP (just to name a few; see the table on
page 145 for more), subtle changes in an expression can have major effects on
what or how it matches. Issues that don’t matter with a DFA engine become
paramount. The fine control an NFA engine affords allows you to really craft an
expr ession, although it can sometimes be a source of confusion to the unaware.
This chapter helps you learn this art.

At stake are both correctness and efficiency: matching just what you want and no
mor e, and doing it quickly. Chapters 4 and 5 examined correctness; here we’ll
look at the efficiency-r elated issues of NFA engines, and how to make them work
to our advantage. (DFA-r elated issues are mentioned when appropriate, but this
chapter is primarily concerned with NFA-based engines.) In a nutshell, the key is to
understand the full implications of backtracking, and to learn techniques to avoid
it where possible. Armed with the detailed understanding of the processing
mechanics, not only will you maximize the speed of matches, you will also be
able to write more complex expressions with confidence.

In This Chapter To arm you well, this chapter first illustrates just how important
these issues can be, then prepar es you for some of the more advanced techniques
pr esented later by reviewing the basic backtracking described in the previous
chapters with a strong emphasis on efficiency and backtracking’s global ramifica-
tions. Then we’ll look at some of the common internal optimizations that can have
a fairly substantial impact on efficiency, and on how expressions are best written
for implementations that employ them. Finally, I bring it all together with some
killer techniques to construct lightning-fast NFA regexes.
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222 Chapter 6: Crafting an Efficient Expression

Tests and Backtracks
The examples we’ll see here illustrate common situations you might meet when
using regular expressions. When examining a particular example’s efficiency, I’ll
sometimes report the number of individual tests that the regex engine does during
the course of a match. For example, in matching !marty " against smarty, ther e ar e
six individual tests — the initial attempt of !m " against s (which fails), then the
matching of !m " against m, !a " against a, and so on. I also often report the number of
backtracks (zero in this example, although the implicit backtrack by the regex
engine’s transmission to retry the regex at the second character position could be
counted as one).

I use these exact numbers not because the precision is important, but rather to be
mor e concr ete than words such as “lots,” “few,” “many,” “better,” “not too much,”
and so forth. I don’t want to imply that using regular expressions with an NFA is an
exercise in counting tests or backtracks; I just want to acquaint you with the rela-
tive qualities of the examples.

Another important thing to realize is that these “precise” numbers probably differ
fr om tool to tool. It’s the basic relative perfor mance of the examples that I hope
will stay with you. One important variation among tools is the optimizations they
might employ. A smart enough implementation completely bypasses the applica-
tion of a particular regex if it can decide beforehand that the target string cannot
possibly match (in cases, for instance, when the string lacks a particular character
that the engine knows beforehand must be there for any match to be successful). I
discuss these important optimizations in this chapter, but the overall lessons are
generally more important than the specific special cases.

Tr aditional NFA versus POSIX NFA
It’s important to keep in mind the target tool’s engine type, Traditional NFA or
POSIX NFA, when analyzing efficiency. As we’ll see in the next section, some con-
cer ns matter to one but not the other. Sometimes a change that has no effect on
one has a great effect on the other. Again, understanding the basics allows you to
judge each situation as it arises.

A Sober ing Example
Let’s start with an example that really shows how important a concern backtrack-
ing and efficiency can be. On page 198, we came up with !"(\\.<[ˆ"\\]),"" to
match a quoted string, with internal quotes allowed if escaped. This regex works,
but if it’s used with an NFA engine, the alternation applied at each character is very
inef ficient. With every “normal” (non-escape, non-quote) character in the string,
the engine has to test !\\. ", fail, and backtrack to finally match with ![ˆ"\\] ". If
used where efficiency matters, we would certainly like to be able to speed this
regex up a bit.
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A Simple Change—Placing Your Best Foot Forward
Since the average double-quoted string has more nor mal characters than escaped
ones, one simple change is to swap the order of the alternatives, putting ![ˆ"\\] "

first and !\\. " second. By placing ![ˆ"\\] " first, alternation backtracking need be
done only when there actually is an escaped item in the string (and once for when
the star fails, of course, since all alternatives must fail for the alternation as a
whole to stop). Figure 6-1 illustrates this differ ence visually. The reduction of
arr ows in the bottom half repr esents the increased number of times when the first
alter native matches. That means less backtracking.

"(\\.|[^"\\])*" "2\"x3\" likeness"

"([^"\\]|\\.)*" "2\"x3\" likeness"

Regular Expression Literal String

- Positions at which an alternation-backtrack occurs

Figur e 6-1: Effects of alternative order (Traditional NFA)

In evaluating this change, consider:

• Does this change benefit a Traditional NFA, POSIX NFA, or both?

• Does this change offer the most benefit when the text matches, when the
match fails, or at all times?

v Consider these questions and flip the page to check your answers. Make sure
that you have a good grasp of the answers (and reasons) before continuing on to
the next section.

Efficienc y Verses Correctness
The most important question to ask when making any change for efficiency’s sake
is whether the change affects the correctness of a match. Reordering alternatives,
as we did earlier, is okay only if the ordering is not relevant to the success of a
match. Consider !"(\\.<[ˆ"])+"", which is an earlier (+ 197) but flawed version
of the regex in the previous section. It’s missing the backslash in the negated char-
acter class, and so can match data that should not be matched. If the regex is only
ever applied to valid data that should be matched, you’d never know of the prob-
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224 Chapter 6: Crafting an Efficient Expression

Effects of a Simple Change
v Answers to the questions on page 223.

Ef fect for which type of engine? The change has virtually no effect whatso-
ever for a POSIX NFA engine. Since it must eventually try every permutation
of the regex anyway, the order in which the alternatives are tried is irrele-
vant. For a Traditional NFA, however, ordering the alternatives in such a way
that quickly leads to a match is a benefit because the engine stops once the
first match is found.

Ef fect during which kind of result? The change results in a faster match only
when there is a match. An NFA can fail only after trying all possible permuta-
tions of the match (and again, the POSIX NFA tries them all anyway). So if
indeed it ends up failing, every permutation must have been attempted, so
the order does not matter.

The following table shows the number of tests (“tests”) and backtracks (“b.t.”)
for several cases (smaller numbers are better):

Tr aditional NFA POSIX NFA

!"(\\.;[ˆ"\\])+"" !"([ˆ"\\];\\.)+" " either
Sample string tests b.t. tests b.t. tests b.t.

"2\"x3\" likeness" 32 14 22 4 48 30
"makudonarudo" 28 14 16 2 40 26
"very...99 more chars...long" 218 109 111 2 325 216

"No \"match\" here 124 86 124 86 124 86

As you can see, the POSIX NFA results are the same with both expressions,
while the Traditional NFA’s perfor mance incr eases (backtracks decrease) with
the new expression. Indeed, in a non-match situation (the last example in
the table), since both engine types must evaluate all possible permutations,
all results are the same.

lem. Thinking that the regex is good and reordering alternatives now to gain more
ef ficiency, we’d be in real trouble. Swapping the alternatives so that ![ˆ"] " is first
actually ensures that it matches incorrectly every time the target has an escaped
quote:

"You need a 2\"3\" photo."

So, be sure that you’re comfortable with the correctness of a match before you
worry too much about efficiency.
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Advancing Further—Localizing the Greediness
Figur e 6-1 makes it clear that in either expression, the star must iterate (or cycle, if
you like) for each normal character, entering and leaving the alternation (and the
par entheses) over and over. These actions involve overhead, which means extra
work—extra work that we’d like to eliminate if possible.

Once while working on a similar expression, I realized that I could optimize it by
taking into account that since ![ˆ"\\] " matches the “normal” (non-quote, non-
backslash) case, using ![ˆ"\\]+ " instead allows one iteration of (˙˙˙)+ to read as
many normal characters as there are in a row. For strings without any escapes, this
would be the entire string. This allows a match with almost no backtracking, and
also reduces the star iteration to a bare minimum. I was very pleased with myself
for making this discovery.

We’ll look at this example in more depth later in this chapter, but a quick look at
some statistics clearly shows the benefit. Figure 6-2 looks at this example for a Tra-
ditional NFA. In comparison to the original !"(\\.<[ˆ"\\])," " (the top of the
upper pair of Figure 6-2), alternation-r elated backtracks and star iterations are both
reduced. The lower pair in Figure 6-2 illustrates that perfor mance is enhanced
even further when this change is combined with our previous reordering.

"(\\.|[^"\\]+)*" "2\"x3\" likeness"

"([^"\\]+|\\.)*" "2\"x3\" likeness"

- Positions at which an alternation-backtrack occurs

Regular Expression Literal String

"(\\.|[^"\\])*" "2\"x3\" likeness"

"([^"\\]|\\.)*" "2\"x3\" likeness"

Figur e 6-2: Effects of an added plus (Traditional NFA)

The big gain with the addition of plus is the resulting reduction in the number of
alter nation backtracks, and, in turn, the number of iterations by the star. The star
quantifies a parenthesized subexpression, and each iteration entails some amount

A Sober ing Example 225

29 April 2003 20:38



226 Chapter 6: Crafting an Efficient Expression

of overhead as the parentheses are enter ed and exited, because the engine needs
to keep tabs on what text is matched by the enclosed subexpression. (This is dis-
cussed in depth later in this chapter.)

Table 6-1 is similar to the one in the answer block on page 224, but with differ ent
expr essions and has information about the number of iterations requir ed by star.
In each case, the number of individual tests and backtracks increases ever so
slightly, but the number of cycles is drastically reduced. This is a big savings.

Table 6-1: Match Efficiency for a Traditional NFA

!"([ˆ"\\]<\\.)+"" !"([ˆ"\\]+<\\.)+""

Sample String tests b.t. +-cycles tests b.t. +-cycles

"makudonarudo" 16 2 13 17 3 2
"2\"x3\" likeness" 22 4 15 25 7 6
"very...99 more chars...long" 111 2 108 112 3 2

Reality Check
Yes, I was quite pleased with myself for this discovery. However, as wonder ful as
this “enhancement” might seem, it is really a disaster waiting to happen. You’ll
notice that when extolling its virtues, I didn’t give statistics for a POSIX NFA engine.
If I had, you might have been surprised to find the "very ˙˙˙ long" example
requir es over thr ee hundr ed thousand million billion trillion backtracks (for the
record, the actual count would be 324,518,553,658,426,726,783,156,020,576,256, or
about 325 nonillion). Putting it mildly, that is a LOT of work. This would take well
over 50 quintillion years, take or leave a few hundred trillion millennia.†

Quite surprising indeed! So, why does this happen? Briefly, it’s because something
in the regex is subject to both an immediate plus and an enclosing star, with noth-
ing to differ entiate which is in control of any particular target character. The result-
ing nondeterminism is the killer. The next section explains a bit more.

“Exponential” matches

Befor e adding the plus, ![ˆ"\\] " was subject to only the star, and the number of
possible ways for the effective !([ˆ"\\]), " to divvy up the line was limited. It
matched one character, then another, and so forth, until each character in the tar-
get text had been matched at most one time. It may not have matched everything
in the target, but at worst, the number of characters matched was directly propor-
tional to the length of the target string. The possible amount of work rose in step
with the length of the target string.

† The reported time is an estimation based on other benchmarks; I did not actually run the test that long.
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With the new regex’s effective !([ˆ"\\]+), ", the number of ways that the plus and
star might divvy up the string explodes exponentially. If the target string is
makudonarudo, should it be considered 12 iterations of the star, wher e each inter-
nal ![ˆ"\\]+ " matches just one character (as might be shown by ‘makudonarudo’)?
Or perhaps one iteration of the star, wher e the internal ![ˆ"\\]+ " matches every-
thing (‘makudonarudo’)? Or, perhaps 3 iterations of the star, wher e the internal
![ˆ"\\]+ " matches 5, 3, and 4 characters respectively (‘makudonarudo’). Or per-
haps 2, 2, 5, and 3 characters respectively (‘makudonarudo’). Or, perhaps...

Well, you get the idea — ther e ar e a lot of possibilities (4,096 in this 12-character
example). For each extra character in the string, the number of possible combina-
tions doubles, and the POSIX NFA must try them all before retur ning its answer.
That’s why these are called “exponential matches.” Another appealing phrase I’ve
heard for these types of matches is super-linear.

However called, it means backtracking, and lots of it!† Twelve characters’ 4,096
combinations doesn’t take long, but 20 characters’ million-plus combinations take
mor e than a few seconds. By 30 characters, the billion-plus combinations take
hours, and by 40, it’s well over a year. Obviously, this is not good.

“Ah,” you might think, “but a POSIX NFA is not all that common. I know my tool
uses a Traditional NFA, so I’m okay.” Well, the major differ ence between a POSIX

and Traditional NFA is that the latter stops at the first full match. If there is no full
match to be had, even a Traditional NFA must test every possible combination
befor e it finds that out. Even in the short "No \"match\" here example from the
pr evious answer block, 8,192 combinations must be tested before the failure can
be reported.

When the regex engine crunches away on one of these neverending matches, the
tool just seems to “lock up.” The first time I experienced this, I thought I’d discov-
er ed a bug in the tool, but now that I understand it, this kind of expression is part
of my regular-expr ession benchmark suite, used to indicate the type of engine a
tool implements:

• If one of these regexes is fast even with a non-match, it’s likely a DFA.

• If it’s fast only when there’s a match, it’s a Traditional NFA.

• If it’s slow all the time, it’s a POSIX NFA.

I used “likely” in the first bullet point because NFAs with advanced optimizations
can detect and avoid these exponentially-painful neverending matches. (More on
this later in this chapter + 250.) Also, we’ll see a number of ways to augment or
rewrite this expression such that it’s fast for both matches and failures alike.

† For readers into such things, the number of backtracks done on a string of length n is 2n+1. The num-
ber of individual tests is 2n+1+ 2n.
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228 Chapter 6: Crafting an Efficient Expression

As the previous list indicates, at least in the absence of certain advanced optimiza-
tions, the relative perfor mance of a regex like this can tell you about the type of
regex engine. That’s why a form of this regex is used in the “Testing the Engine
Type” section in Chapter 4 (+ 146).

Certainly, not every little change has the disastrous effects we’ve seen with this
example, but unless you know the work going on behind an expression, you will
simply never know until you run into the problem. Toward that end, this chapter
looks at the efficiency concerns and ramifications of a variety of examples. As with
most things, a firm grasp of the underlying basic concepts is essential to an under-
standing of more advanced ideas, so before looking at ways to get around expo-
nential matches, I’d like to review backtracking in explicit detail.

A Global View of Backtracking
On a local level, backtracking is simply the retur n to attempt an untried option.
That’s simple enough to understand, but the global implications of backtracking
ar e not as easily grasped. In this section, we’ll take an explicit look at the details
of backtracking, both during a match and during a non-match, and we’ll try to
make some sense out of the patterns we see emerge.

Let’s start by looking closely at some examples from the previous chapters. From
page 165, if we apply !".+"" to

The name "McDonald’s" is said "makudonarudo" in Japanese

we can visualize the matching action as shown in Figure 6-3.

The regex is attempted starting at each string position in turn, but because the
initial quote fails immediately, nothing interesting happens until the attempt start-
ing at the location marked A. At this point, the rest of the expression is attempted,
but the transmission (+ 148) knows that if the attempt turns out to be a dead end,
the full regex can still be tried at the next position.

The ! .+ " then matches to the end of the string, where the dot is unable to match
the nothingness at the end of the string and so the star finally stops. None of the
46 characters matched by ! .+ " is requir ed, so while matching them, the engine
accumulated 46 more situations to where it can backtrack if it turns out that it
matched too much. Now that ! .+ " has stopped, the engine backtracks to the last of
those saved states, the “ try !".+"" at ˙˙˙anese ” state.

This means that we try to match the closing quote at the end of the string. Well, a
quote can match nothingness no better than dot, so this fails too. The engine
backtracks again, this time trying to match the closing quote at ˙˙˙Japanese, which
also fails.
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Match of: ".*"
backtrack-and-attempt, but fail
successful match of regex component

KEY

attempt-but-fail

The name "McDonald’s" is said "makudonarudo" in Japanese
A

C

E

G

I

D

F

H

POSIX NFA only

Figur e 6-3: Successful match of !".+" "

The remember ed states accumulated while matching from A to B ar e tried in
reverse (latest first) order as we move from B to C. After trying only about a dozen
of them, the state that repr esents “ try !".+"" at ˙˙˙arudo" in Japa˙˙˙ ” is reached,
point C. This can match, bringing us to D and an overall match:

The name "McDonald’s" is said "makudonarudo" in Japanese

If this is a Traditional NFA, the remaining unused states are simply discarded and
the successful match is reported.

More Work for a POSIX NFA

For POSIX NFA, the match noted earlier is remember ed as “the longest match we’ve
seen so far,” but all remaining states must still be explored to see whether they
could come up with a longer match. We know this won’t happen in this case, but
the regex engine must find that out for itself.

So, the states are tried and immediately discarded except for the remaining two sit-
uations where ther e is a quote in the string available to match the final quote.
Thus, the sequences D-E-F and F-G-H ar e similar to B-C-D, except the matches at
F and H ar e discarded as being shorter than a previously found match at D

By I, the only remaining backtrack is the “bump along and retry” one. However,
since the attempt starting at A was able to find a match (three in fact), the POSIX

NFA engine is finally done and the match at D is reported.
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230 Chapter 6: Crafting an Efficient Expression

Work Required During a Non-Match
We still need to look at what happens when there is no match. Let’s look at
!".+"! ". We know this won’t match our example text, but it comes close on a num-
ber of occasions throughout the match attempt. As we’ll see, that results in much
mor e work.

Figur e 6-4 illustrates this work. The A-I sequence looks similar to that in Figure
6-3. One differ ence is that this time it does not match at point D (because the end-
ing exclamation point can’t match). Another differ ence is that the entire sequence
in Figure 6-4 applies to both Traditional and POSIX NFA engines: finding no match,
the Traditional NFA must try as many possibilities as the POSIX NFA— all of them.

Match of: ".*"!
backtrack-and-attempt, but fail
successful match of regex component

KEY

attempt-but-fail

A B
C

E

G

I

D

F

J K
L

N

P

M

O

Q R
S

U
T

V W
X

Y

Sub-attempt

Sub-attempt

Sub-attempt

Sub-attempt

H

The name "McDonald’s" is said "makudonarudo" in Japanese

Figur e 6-4: Failing attempt to match !".+"! "

Since there is no match from the overall attempt starting at A and ending at I, the
transmission bumps along to retry the match. Attempts eventually starting at points
J, Q, and V look promising, but fail similarly to the attempt at A. Finally at Y, ther e
ar e no more positions for the transmission to try from, so the overall attempt fails.
As Figure 6-4 shows, it took a fair amount of work to find this out.
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Being More Specific
As a comparison, let’s replace the dot with ![ˆ"] ". As discussed in the previous
chapter, this gives less surprising results because it is more specific, and the end
result is that with it, the new regex is more efficient to boot. With !"[ˆ"]+"!", the
![ˆ"]+ " can’t get past the closing quote, eliminating much matching and subse-
quent backtracking.

Figur e 6-5 shows the failing attempt (compare to Figur e 6-4). As you can see,
much less backtracking is needed. If the differ ent results suit your needs, the
reduced backtracking is a welcome side effect.

The name "McDonald’s" is said "makudonarudo" in Japanese

Match of: "[^"]*"!
backtrack-and-attempt, but fail
successful match of regex component

KEY

attempt-but-fail

A G

I
H

J N

P
O

Q S

U
T

V W
X

Y

Sub-attempt

Sub-attempt

Sub-attempt

Sub-attempt

Figur e 6-5: Failing attempt to match !"[ˆ"]+"! "

Alter nation Can Be Expensive
Alter nation can be a leading cause of backtracking. As a simple example, let’s use
our makudonarudo test string to compare how !u;v;w;x;y;z " and ![uvwxyz] " go
about matching. A character class is usually a simple test,† so ![uvwxyz] " suf fers
only the bump-along backtracks (34 of them) until we match at:

The name "McDonald’s" is said "makudonarudo" in Japanese

† Some implementations are not as efficient as others, but it’s safe to assume that a class is always
faster than the equivalent alternation.
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232 Chapter 6: Crafting an Efficient Expression

With !u;v;w;x;y;z ", however, six backtracks are requir ed at each starting position,
eventually totaling 204 before we achieve the same match. Obviously, not every
alter nation is replaceable, and even when it is, it’s not necessarily as easily as with
this example. In some situations, however, certain techniques that we’ll look at
later can greatly reduce the amount of alternation-r elated backtracking requir ed for
a match.

Understanding backtracking is perhaps the most important facet of NFA ef ficiency,
but it’s still only part of the equation. A regex engine’s optimizations can gr eatly
impr ove ef ficiency. Later in this chapter, we’ll look in detail at what a regex engine
needs to do, and how it can optimize its perfor mance.

Benchmarking
Because this chapter talks a lot about speed and efficiency, and I often mention
benchmarks I’ve done, I’d like to mention a few principles of benchmarking. I’ll
also show simple ways to benchmark in a few languages.

Basic benchmarking is simply timing how long it takes to do some work. To do
the timing, get the system time, do the work, get the system time again, and report
the differ ence between the times as the time it took to do the work. As an exam-
ple, let’s compare !ˆ(a;b;c;d;e;f;g)+$ " with !ˆ[a-g]+$ ". We’ll first look at
benchmarking in Perl, but will see it in other languages in a bit. Here’s a simple
(but as we’ll see, somewhat lacking) Perl script:

use Time::HiRes ’time’; # So time() gives a high-resolution value.

$StartTime = time();
"abababdedfg" =˜ m/ˆ(a;b;c;d;e;f;g)+$/;
$EndTime = time();
printf("Alternation takes %.3f seconds.\n", $EndTime - $StartTime);

$StartTime = time();
"abababdedfg" =˜ m/ˆ[a-g]+$/;
$EndTime = time();
printf("Character class takes %.3f seconds.\n", $EndTime - $StartTime);

It looks (and is) simple, but there are some important points to keep in mind
while constructing a test for benchmarking:

• Time only “interesting” work Time as much of the “work” as possible, but as
little “non-work” as possible. If there is some initialization or other setup that
must be done, do it before the starting time is taken. If there’s cleanup, do it
after the ending time is taken.

• Do “enough” work Often, the time it takes to do what you want to test is
very short, and a computer’s clock doesn’t have enough granularity to give
meaning to the timing.
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When I run the simple Perl test on my system, I get

Alternation takes 0.000 seconds.
Character class takes 0.000 seconds.

which really doesn’t tell me anything other than both are faster than the short-
est time that can be measured. So, if something is fast, do it twice, or 10 times,
or even 10,000,000 times—whatever is requir ed to make “enough” work. What
is “enough” depends on the granularity of the system clock, but most systems
now have clocks accurate down to 1/100th of a second, and in such cases, tim-
ing even half a second of work may be sufficient for meaningful results.

• Do the “right” work Doing a very fast operation ten million times involves
the overhead of ten million updates of a counter variable in the block being
timed. If possible, it’s best to increase the amount of real work being done in
a way that doesn’t increase the over head work. In our Perl example, the regu-
lar expressions are being applied to fairly short strings: if applied to much
longer strings, they’d do more “real” work each time.

So, taking these into account, here’s another version:

use Time::HiRes ’time’; # So time() gives a high-resolution value.
$TimesToDo = 1000; # Simple setup
$TestString = "abababdedfg" x 1000; # Makes a huge string

$Count = $TimesToDo;
$StartTime = time();
while ($Count-- > 0) {

$TestString =˜ m/ˆ(a;b;c;d;e;f;g)+$/;
}
$EndTime = time();
printf("Alternation takes %.3f seconds.\n", $EndTime - $StartTime);

$Count = $TimesToDo;
$StartTime = time();
while ($Count-- > 0) {

$TestString =˜ m/ˆ[a-g]+$/;
}
$EndTime = time();
printf("Character class takes %.3f seconds.\n", $EndTime - $StartTime);

Notice how the $TestString and $Count ar e initialized before the timing starts?
($TestString is initialized with Perl’s convenient x operator, which replicates the
string on its left as many times as the number on its right.) On my system, with
Perl 5.8, this prints:

Alternation takes 7.276 seconds.
Character class takes 0.333 seconds.

So, with this test case, one is about 22× faster than the other. The benchmark
should be executed a few times, with the fastest times taken, to lessen the impact
of sporadic background system activity.

Benchmarking 233
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234 Chapter 6: Crafting an Efficient Expression

Know What You’re Measur ing
It might be interesting to see what happens when the initialization is changed to:

$TimesToDo = 1000000;
$TestString = "abababdedfg";

Now, the test string is 1,000× shorter, but the test is done 1,000× more times. The
total number of characters tested and matched by each regex remains the same,
and so conceptually, one might think that the amount of “work” should also
remain the same the same. Howver, the results are quite differ ent:

Alternation takes 18.167 seconds.
Character class takes 5.231 seconds.

Both are now much slower than before. This is due to all the extra “non-work”
overhead — the update and testing of $Count, and the setup of the regex engine,
now each happen 1,000× more than before.

The extra overhead adds almost five seconds to the faster test, but more than 10
seconds to the alternation test. Why is the alternation test affected so much more?
It’s mostly due to the extra overhead of the capturing parenthses (which requir e
their own extra processing before and after each test, and doing that 1,000× more
adds up).

In any case, the point of this change is to illustrate that the results are str ongly
influenced by how much real work vs. non-work overtime is part of the timing.

Benchmarking with Java
Benchmarking Java can be a slippery science, for a number of reasons. Let’s first
look at a somewhat naïve example, and then look at why it’s naïve, and at what
can be done to make it less so. The listing on the facing page shows the bench-
mark example with Java, using Sun’s java.util.regex.

Notice how the regular expressions are compiled in the initialization part of the
pr ogram? We want to benchmark the matching speed, not the compile speed.

Speed is dependent upon which virtual machine (VM) is used. Sun standard JRE†

comes with two virtual machines, a client VM optimized for fast startup, and a
server VM optimized for heavy-duty long-haul work.

† I had to use a shorter string for this test to run on my Linux system, as a longer string somehow tick-
les a problem with the VM, causing the test to abort. Engineers at Sun tell me it’s due to an unex-
pected interaction between the aggressively optimizing C compiler used to build the VM (gcc), and
an overly conservative use of Linux’s stack-monitoring hooks. It may be fixed as early as Java 1.4.1.
To compensate for the shortened string in the current test, I’ve increased the number of times the
loop executes the match, so these results should be comparable to the original.
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Benchmarking with java.util.regex

import java.util.regex.+;
public class JavaBenchmark {
public static void main(String [] args)
{
Matcher regex1 = Pattern.compile("ˆ(a;b;c;d;e;f;g)+$").matcher("");
Matcher regex2 = Pattern.compile("ˆ[a-g]+$").matcher("");
long timesToDo = 4000;

StringBuffer temp = new StringBuffer();
for (int i = 250; i > 0; i--)

temp.append("abababdedfg");
String testString = temp.toString();

// Time first one . . .
long count = timesToDo;
long startTime = System.currentTimeMillis();
while (--count > 0)

regex1.reset(testString).find();
double seconds = (System.currentTimeMillis() - startTime)/1000.0;
System.out.println("Alternation takes " + seconds + " seconds");

// Time second one . . .
count = timesToDo;
startTime = System.currentTimeMillis();
while (--count > 0)

regex2.reset(testString).find();
seconds = (System.currentTimeMillis() - startTime)/1000.0;
System.out.println("Character Class takes " + seconds + " seconds");

}
}

On my system, running the benchmark on the client VM pr oduces:

Alternation takes 19.318 seconds
Character Class takes 1.685 seconds

while the server VM yields:

Alternation takes 12.106 seconds
Character Class takes 0.657 seconds

What makes benchmarking slippery, and this example somewhat naïve, is that the
timing can be highly dependent on how well the automatic pre-execution com-
piler works, or how the run-time compiler interacts with the code being tested.
Some VM have a JIT (Just-In-T ime compiler), which compiles code on the fly, just
befor e it’s needed.

Sun’s Java 1.4 has what I call a BLTN (Better-Late-Than-Never) compiler, which
kicks in during execution, compiling and optimizing heavily-used code on the fly.
The nature of a BLTN is that it doesn’t “kick in” until it senses that some code is
“hot” (being used a lot). A VM that’s been running for a while, such as in a server
envir onment, will be “warmed up,” while our simple test ensures a “cold” server
(nothing yet optimized by the BLTN).
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236 Chapter 6: Crafting an Efficient Expression

One way to see “warmed up” times is to run the benchmarked parts in a loop:

// Time first one . . .
for (int i = 4; i > 0; i--)
{

long count = timesToDo;
long startTime = System.currentTimeMillis();
while (--count > 0)

regex1.reset(testString).find();
double seconds = (System.currentTimeMillis() - startTime)/1000.0;
System.out.println("Alternation takes " + seconds + " seconds");

}

If the extra loop runs enough times (say, for 10 seconds), the BLTN will have opti-
mized the hot code, leaving the last times reported as repr esentative of a warmed-
up system. Testing again with the server VM, these times are indeed a bit faster by
about 8% and 25%:

Alternation takes 11.151 seconds
Character Class takes 0.483 seconds

Another issue that makes Java benchmarking slippery is the unpredictable nature
of thread scheduling and garbage collection. Again, running the test long enough
helps amortize their unpredictable influence.

Benchmarking with VB.NET
The benchmark example in VB.NET is shown in the listing on the facing page. On
my system, it produces:

Alternation takes 13.311 seconds
Character Class takes 1.680 seconds

The .NET Framework allows a regex to be compiled to an even more efficient
for m, by providing RegexOptions.Compiled as a second argument to each
Regex constructor (+ 404). Doing that results in:

Alternation takes 5.499 seconds
Character Class takes 1.157 seconds

Both tests are faster using the Compiled option, but alternation sees a greater rela-
tive benefit (its almost 3× faster when Compiled, but the class version is only
about 1.5× faster), so it seems that alternation benefits from the more efficient
compilation relatively more than a character class does.

29 April 2003 20:38



Benchmarking with VB.NET

Option Explicit On
Option Strict On

Imports System.Text.RegularExpressions

Module Benchmark
Sub Main()

Dim Regex1 as Regex = New Regex("ˆ(a;b;c;d;e;f;g)+$")
Dim Regex2 as Regex = New Regex("ˆ[a-g]+$")
Dim TimesToDo as Integer = 1000
Dim TestString as String = ""
Dim I as Integer
For I = 1 to 1000

TestString = TestString & "abababdedfg"
Next

Dim StartTime as Double = Timer()
For I = 1 to TimesToDo

Regex1.Match(TestString)
Next
Dim Seconds as Double = Math.Round(Timer() - StartTime, 3)
Console.WriteLine("Alternation takes " & Seconds & " seconds")

StartTime = Timer()
For I = 1 to TimesToDo

Regex2.Match(TestString)
Next
Seconds = Math.Round(Timer() - StartTime, 3)
Console.WriteLine("Character Class takes " & Seconds & " seconds")

End Sub
End Module

Benchmarking with Python
The benchmark example in Python is shown in the listing on the next page.

For Python’s regex engine, I had to cut the size of the string a bit because the
original causes an internal error (“maximum recursion limit exceeded”) within the
regex engine. To compensate, I increased the number of times the test is done by
a proportional amount.

On my system, the benchmark produces:

Alternation takes 10.357 seconds
Character Class takes 0.769 seconds
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Benchmarking with Python

import re
import time
import fpformat

Regex1 = re.compile("ˆ(a;b;c;d;e;f;g)+$")
Regex2 = re.compile("ˆ[a-g]+$")

TimesToDo = 1250;
TestString = ""
for i in range(800):

TestString += "abababdedfg"

StartTime = time.time()
for i in range(TimesToDo):

Regex1.search(TestString)
Seconds = time.time() - StartTime
print "Alternation takes " + fpformat.fix(Seconds,3) + " seconds"

StartTime = time.time()
for i in range(TimesToDo):

Regex2.search(TestString)
Seconds = time.time() - StartTime
print "Character Class takes " + fpformat.fix(Seconds,3) + " seconds"

Benchmarking with Ruby
Her e’s the benchmark example in Ruby:

TimesToDo=1000
testString=""
for i in 1..1000

testString += "abababdedfg"
end

Regex1 = Regexp::new("ˆ(a;b;c;d;e;f;g)+$");
Regex2 = Regexp::new("ˆ[a-g]+$");

startTime = Time.new.toRf
for i in 1..TimesToDo

Regex1.match(testString)
end
print "Alternation takes %.3f seconds\n" % (Time.new.toRf - startTime);

startTime = Time.new.toRf
for i in 1..TimesToDo

Regex2.match(testString)
end
print "Character Class takes %.3f seconds\n" % (Time.new.toRf - startTime);

On my system, it produces:

Alternation takes 16.311 seconds
Character Class takes 3.479 seconds
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Benchmarking with Tcl
Her e’s the benchmark example in Tcl:

set TimesToDo 1000
set TestString ""
for {set i 1000} {$i > 0} {incr i -1} {

append TestString "abababdedfg"
}

set Count $TimesToDo
set StartTime [clock clicks -milliseconds]
for {} {$Count > 0} {incr Count -1} {

regexp {ˆ(a;b;c;d;e;f;g)+$} $TestString
}
set EndTime [clock clicks -milliseconds]
set Seconds [expr ($EndTime - $StartTime)/1000.0]
puts [format "Alternation takes %.3f seconds" $Seconds]

set Count $TimesToDo
set StartTime [clock clicks -milliseconds]
for {} {$Count > 0} {incr Count -1} {

regexp {ˆ[a-g]+$} $TestString
}
set EndTime [clock clicks -milliseconds]
set Seconds [expr ($EndTime - $StartTime)/1000.0]
puts [format "Character class takes %.3f seconds" $Seconds]

On my system, this benchmark produces:

Alternation takes 0.362 seconds
Character class takes 0.352 seconds

Wow, they’re both about the same speed! Well, recall from the table on
page 145 that Tcl has a hybrid NFA/DFA engine, and these regular expressions are
exactly the same to a DFA engine. Most of what this chapter talks about simply
does not apply to Tcl. See the sidebar on page 243 for more.

Common Optimizations
A smart regex implementation has many ways to optimize how quickly it produces
the results you ask of it. Optimizations usually fall into two classes:

• Doing something faster Some types of operations, such as !\d+ ", are so com-
mon that the engine might have special-case handling set up to execute them
faster than the general engine mechanics would.

• Av oiding work If the engine can decide that some particular operation is
unneeded in producing a correct result, or perhaps that some operation can
be applied to less text than originally thought, skipping those operations can
result in a time savings. For example, a regex beginning with !\A " (start-of-line)
can match only when started at the beginning of the string, so if no match is
found there, the transmission need not bother checking from other positions.
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Over the next dozen or so pages, we’ll look at many of the differ ent and inge-
nious optimizations that I’ve seen. No one language or tool has them all, or even
the same mix as another language or tool, and I’m sure that there are plenty of
other optimizations that I’ve not yet seen, but this chapter should leave you much
mor e empower ed to take advantage of whatever optimizations your tool offers.

No Free Lunch
Optimizations often result in a savings, but not always. There’s a benefit only if the
amount of time saved is more than the extra time spent checking to see whether
the optimization is applicable in the first place. In fact, if the engine checks to see
if an optimization is applicable and the answer is “no,” the overall result is slower
because it includes the fruitless check on top of the subsequent normal application
of the regex. So, there’s a balance among how much time an optimization takes,
how much time it saves, and importantly, how likely it is to be invoked.

Let’s look at an example. The expression !\b\B " (wor d boundary at the same loca-
tion as a non-wor d boundary) can’t possibly match. If an engine were to realize
that a regex contained !\b\B " in such a way that it was requir ed for any match, the
engine would know that the overall regex could never match, and hence never
have to actually apply that regex. Rather, it could always immediately report fail-
ur e. If applied to long strings, the savings could be substantial.

Yet, no engine that I know of actually uses this optimization. Why not? Well, first
of all, it’s not necessarily easy to decide whether it applies to a particular regex.
It’s certainly possible for a regex to have !\b\B " somewher e in it, yet still match,† so
the engine has to do extra work ahead of time to be absolutely certain. Still, the
savings could be truly substantial, so it could be worth doing the extra work if
!\b\B " was expected to be common. But, it’s not common (I think it’s silly!), so
even though the savings could be huge, it’s not worth slowing every other regex
by the extra overhead requir ed to do the check.

Ever yone’s Lunch is Different
Keep this in mind when looking at the various kinds of optimizations that this
chapter discusses. Even though I’ve tried to pick simple, clean names for each
one, it may well be that every engine that implements it does so in a differ ent
way. A seemingly innocuous change in a regex can cause it to become substan-
tially faster with one implementation, but substantially slower with another.

† I’ve used !\b\B " befor e to cause one part of a larger expression to fail, during testing. For example, I
might insert it at the marked point of ! ˙˙˙(this ;this other)˙˙ "̇ to guaranteed failure of the first alter-
native. These days, when I need a “must fail” component, I use !(?!)". You can see an interesting
Perl-specific example of this on page 333.
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The Mechanics of Regex Application
Befor e looking at the ways advanced systems optimize their regex perfor mance,
and ways we can take advantage of those optimizations, it’s important to first
understand the basics of regex application. We’ve already covered the details
about backtracking, but in this short section, we’ll step back a bit to look at the
br oader pictur e.

Her e ar e the main steps taken in applying a regular expression to a target string:

1. Regex Compilation The regex is inspected for errors, and if valid, compiled
into an internal form.

2. Tr ansmission Begins The transmission “positions” the engine at the start of
the target string.

3. Component Tests The engine works through the regex and the text, moving
fr om component to component in the regex, as described in Chapter 4. We’ve
alr eady cover ed backtracking for NFAs in great detail, but there are a few
additional points to mention:

• With components next to each other, as with the !S ", !u ", !b ", !j", !e " . . . ,  of
!Subject ", each component is tried in turn, stopping only if one fails.

• With quantifiers, control jumps between the quantifier (to see whether
the quantifier should continue to make additional attempts) and the com-
ponent quantified (to test whether it matches).

• Ther e is some overhead when control enters or exits a set of capturing
par entheses. The actual text matched by the parentheses must be remem-
ber ed so that $1 and the like are supported. Since a set of parentheses
may be “backtracked out of,” the state of the parentheses is part of the
states used for backtracking, so entering and exiting capturing parenthe-
ses requir es some modification of that state.

4. Finding a Match If a match is found, a Traditional NFA “locks in” the current
state and reports overall success. On the other hand, a POSIX NFA mer ely
remembers the possible match if it is the longest seen so far, and continues
with any saved states still available. Once no more states are left, the longest
match that was seen is the one reported.

5. Tr ansmission Bump-Along If no match is found, the transmission bumps the
engine along to the next character in the text, and the engine applies the
regex all over again (going back to step 3).

6. Overall Failure If no match is found after having applied the engine at every
character in the target string (and after the last character as well), overall fail-
ur e must be reported.
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242 Chapter 6: Crafting an Efficient Expression

The next few sections discuss the many ways this work can be reduced by smart
implementations, and taken advantage of by smart users.

Pre-Application Optimizations
A good regex engine implementation can reduce the amount of work that needs
to be done before the actual application of a regex, and sometimes can even
decide quickly beforehand that the regex can never match, thereby avoiding the
need to even apply the regex in the first place.

Compile caching

Recall the mini mail program from Chapter 2 (+ 57). The skeleton of the main
loop, which processes every line of the header, looks like:

while (˙˙˙) {
if ($line =˜ m/ˆ\s,$/ ) ˙˙˙

if ($line =˜ m/ˆSubject: (.,)/) ˙˙˙

if ($line =˜ m/ˆDate: (.,)/) ˙˙˙

if ($line =˜ m/ˆReply-To: (\S+)/)˙˙˙

if ($line =˜ m/ˆFrom: (\S+) \(([ˆ()],)\)/)˙˙˙

+
+
+

}

The first thing that must be done before a regular expression can be used is that it
must be inspected for errors, and compiled into an internal form. Once compiled,
that internal form can be used in checking many strings, but will it? It would cer-
tainly be a waste of time to recompile each regex each time through the loop.
Rather, it is much more time efficient (at the cost of some memory) to save, or
cache, the internal form after it’s first compiled, and then use that same internal
for m for each subsequent application during the loop.

The extent to which this can be done depends on the type of regular-expr ession
handling the application offers. As described starting on page 93, the three types
of handling are integrated, pr ocedural, and object-oriented.

Compile caching in the integrated approach
An integrated approach, like Perl’s and awk’s, allows compile caching to be done
with ease. Internally, each regex is associated with a particular part of the code,
and the compiled form can be associated with the code the first time it’s executed,
and merely refer enced subsequent times. This provides for the maximum opti-
mization of speed at the cost of the memory needed to hold all the cached
expr essions.

The ability to interpolate variables into the regex operand (that is, use the contents
of a variable as part of the regular expression) throws somewhat of a monkey
wr ench into the caching plan. When variables are interpolated, as with something
like m/ˆSubject: \Q$DesiredSubject\E\s+$/, the actual regular expression
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DFAs, Tcl, and Hand-Tuning Regular Expressions
For the most part, the optimizations described in this chapter simply don’t
apply to DFAs. The compile caching optimization, discussed on page 242,
does apply to all types of engines, but none of the techniques for hand-tun-
ing discussed throughout this chapter apply to DFAs. As Chapter 4 makes
clear (+ 157), expressions that are logically equivalent — !this;that " and
!th(is;at) ", for example — ar e equivalent to a DFA. It’s because they’re not
necessarily equivalent to an NFA that this chapter exists.

But what about Tcl, which has a hybrid DFA/NFA engine? Tcl’s regex engine
was custom built for Tcl by regular-expr ession legend Henry Spencer (+ 88),
who has done a fantastic job blending the best of both DFA and NFA worlds.
Henry noted himself in an April 2000 Usenet posting:

In general, the Tcl RE-matching engine is much less sensitive to the exact
for m of the RE than traditional matching engines. Things that it does
quickly will be fast no matter how you write them; things that it does
slowly will be slow no matter how you write them. The old folklore about
hand-optimizing your REs simply does not apply.

Henry’s Tcl regex engine is an important step forward. If this technology
wer e mor e widespr ead, much of this chapter would not be needed.

may change from iteration to iteration because it depends on the value in the vari-
able, which can change from iteration to iteration. If it changes every time, the
regex must be compiled every time, so nothing can be reused.

Well, the regular expression might change with each iteration, but that doesn’t
mean it needs to be recompiled each time. An intermediate optimization is to
check the results of the interpolation (the actual value to be used as the regular
expr ession), and recompile only if it’s differ ent fr om the previous time. If the value
actually changes each time, there’s no optimization, as the regex indeed must be
recompiled each time. But, if it changes only sporadically, the regular expression
need only be checked (but not compiled) most times, yielding a handsome
optimization.

Compile caching in the procedural approach
With an integrated approach, regex use is associated with a particular location in a
pr ogram, so the compiled version of the regex can be cached and used the next
time that location in the program is executed. But, with a procedural approach,
ther e is just a general “apply this regex” function that is called as needed. This
means that there’s no location in a program with which to associate the compiled
for m, so the next time the function is called, the regex must be compiled from
scratch again. That’s how it works in theory, but in practice, it’s much too
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inef ficient to abandon all attempts at caching. Rather, what’s often done is that a
mapping of recently used regex patterns is maintained, linking each pattern to its
resulting compiled form.

When the apply-this-regex function is called, it compares the pattern argument
with those in the cache of saved regular expressions, and uses the cached version
if it’s there. If it’s not, it goes ahead and compiles the regex, saving it to the cache
(and perhaps flushing an old one out, if the cache has a size limit). When the
cache has become full and a compiled form must be thrown out, it’s usually the
least recently used one.

GNU Emacs keeps a cache of 20 expressions, while Tcl keeps 30. A large cache
size is important because if more regular expressions are used within a loop than
the size of the cache, by the time the loop restarts, the first regex will have been
flushed from the cache, guaranteeing that every expression will have to be com-
piled from scratch every time.

Compile caching in the object-oriented approach
The object-oriented approach puts control of when a regex is compiled directly
into the programmer’s hands. Compilation of the regex is exposed to the user via
object constructors such as New Regex, re.compile, and Pattern.compile

(which are from .NET, Python, and java.util.regex). In the simple examples
fr om Chapter 3 where these are intr oduced (starting on page 95), the compilation
is done just before the regex is actually used, but there’s no reason that they can’t
be done earlier (such as sometime before a loop, or even at program initialization)
and then used freely as needed. This is done, in the benchmarking examples on
pages 234, 236, and 237.

The object-oriented approach also affords the programmer control over when a
compiled form is thr own away, via the object’s destructor. Being able to immedi-
ately throw away compiled forms that will no longer be needed saves memory.

Pre-check of required character/substr ing optimization

Searching a string for a particular character (or perhaps some literal substring) is a
much “lighter” operation than applying a full NFA regular expression, so some sys-
tems do extra analysis of the regex during compilation to determine if there are
any characters or substrings that are requir ed to exist in the target for a possible
match. Then, before actually applying the regex to a string, the string is quickly
checked for the requir ed character or string — if it’s not found, the entire applica-
tion of the regex can be bypassed.

For example, with !ˆSubject: (.+)", the string ‘Subject: ’ is requir ed. A pro-
gram can look for the entire string, perhaps using the Boyer-Moor e search algo-
rithm (which is a fast way to search for literal strings within text — the longer the
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literal string, the more efficient the search). A program not wishing to implement
the Boyer-Moor e algorithm can still gain a benefit by picking a requir ed character
and just checking every character in the target text. Picking a character less likely
to be found in the target (such as picking ‘:’ over ‘t’ from our ‘Subject: ’ exam-
ple) is likely to yield better results.

While it’s trivial for a regex engine to realize what part of !ˆSubject: (.+)" is a
fixed literal string requir ed for any match, it’s more work to recognize that ‘th’ is
requir ed for any match of !this;that;other ", and most don’t do it. It’s not exactly
black and white — an implementation not realizing that ‘th’ is requir ed may well
still be able to easily realize that ‘h’ and ‘t’ are requir ed, so at least do a one-char-
acter check.

Ther e is a great variety in how well differ ent applications can recognize requir ed
characters and strings. Most are thwarted by the use of alternation. With such sys-
tems, using !th(is;at) " can provide an improvement over !this;that ". Also, be
sur e to see the related section “Initial character/class/substring discrimination” on
the next page.

Length-cognizance optimization

!ˆSubject: (.+)" can match arbitrarily long text, but any match is certainly at least
nine characters long. Therefor e, the engine need not be started up and applied to
strings shorter than that length. Of course, the benefit is more pronounced with a
regex with a longer requir ed length, such as !:\d{79}: " (81 characters in any
match).

Also see the length-cognizance transmission optimization on page 247.

Optimizations with the Transmission
If the regex engine can’t decide ahead of time that a particular string can never
match, it may still be able to reduce the number of locations that the transmission
actually has to apply the regex.

Star t of string/line anchor optimization

This optimization recognizes that any regex that begins with !ˆ " can match only
when applied where !ˆ " can match, and so need be applied at those locations only.

The comments in the “Pre-check of requir ed character/substring” section on the
facing page about the ability of the regex engine to derive just when the optimiza-
tion is applicable to a regex is also valid here. Any implementation attempting this
optimization should be able to recognize that !ˆ(this;that) " can match starting
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only at locations where !ˆ " can match, but many won’t come to the same realiza-
tion with !ˆthis;ˆthat ". In such situations, writing !ˆ(this;that) " or (even better)
!ˆ(?:this;that) " can allow a match to be perfor med much faster.

Similar optimizations involve !\A ", and for repeated matches, !\G ".

Implicit-anchor optimization

An engine with this optimization realizes that if a regex begins with ! .+ " or ! .+ ",
and has no global alternation, an implicit !ˆ " can be prepended to the regex. This
allows the start of string/line anchor optimization of the previous section to be
used, which can provide a lot of savings.

Mor e advanced systems may realize that the same optimization can also be
applied when the leading ! .+ " or ! .+ " is within parentheses, but care must be taken
when the parentheses are capturing. For example, the regex !(.+)X\1 " finds loca-
tions where a string is repeated on either side of ‘X’, and an implicit leading !ˆ "

causes it to improperly not match ‘1234X2345’.†

End of string/line anchor optimization

This optimization recognizes that some regexes ending with !$ " or other end
anchors (+ 127) have matches that start within a certain number of bytes from the
end of the string. For example, with !regex(es)?$ ", any match must start no more
than eight‡ characters from the end of the string, so the transmission can jump
dir ectly to that spot, potentially bypassing many positions if the target string
is long.

Initial character/c lass/substring discrimination optimization

A mor e generalized version of the pr e-check of requir ed character/string optimiza-
tion, this optimization uses the same information (that any match by the regex
must begin with a specific character or literal substring) to let the transmission use
a fast substring check so that it need apply the regex only at appropriate spots in
the string. For example !this;that;other " can match only at locations beginning
with ![ot] ", so having the transmission pre-check each character in the string and
applying the regex only at matching positions can afford a huge savings. The
longer the substring that can be pre-checked, the fewer “false starts” are likely.

† It’s interesting to note that Perl had this over-optimization bug unnoticed for over 10 years until Perl
developer Jeff Pinyan discovered (and fixed) it in early 2002. Apparently, regular expressions like
!(.+)X\1 " ar en’t used often, or the bug would have been discovered sooner. Most regex engines don’t
have this bug because they don’t have this optimization, but some still do have the bug. These
include Ruby, PCRE, and tools that use PCRE, such as PHP.

‡ I say eight characters rather than seven because in many flavors, !$ " can match before a string-ending
newline (+ 127).
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Embedded literal string check optimization

This is almost exactly like the initial string discrimination optimization, but is
mor e advanced in that it works for literal strings embedded a known distance into
any match. !\b(perl;java)\.regex\.info\b ", for example, has ‘.regex.info’
four characters into any match, so a smart transmission can use a fast Boyer-Moor e
literal-string check to find ‘.regex.info’, and then actually apply the regex start-
ing four characters before.

In general, this works only when the literal string is embedded a fixed distance
into any match. It doesn’t apply to !\b(vb;java)\.regex\.info\b ", which does
have a literal string, but one that’s embedded either two or four characters into
any match. It also doesn’t apply to !\b(\w+)\.regex\.info\b ", whose literal
string is embedded any number of characters into any match.

Length-cognizance transmission optimization

Dir ectly related to the Length-cognizance optimization on page 245, this optimiza-
tion allows the transmission to abandon the attempt if it’s gotten too close to the
end of the string for a match to be possible.

Optimizations of the Regex Itself
Literal string concatenation optimization

Perhaps the most basic optimization is that !abc " can be treated by the engine as
“one part,” rather than the three parts “ !a " then !b " then !c ".” If this is done, the one
part can be applied by one iteration of the engine mechanics, avoiding the over-
head of three separate iterations.

Simple quantifier optimization

Uses of star, plus, and friends that apply to simple items, such as literal characters
and character classes, are often optimized such that much of the step-by-step over-
head of a normal NFA engine is removed. The main control loop inside a regex
engine must be general enough to deal with all the constructs the engine supports.
In programming, “general” often means “slow,” so this important optimization
makes simple quantifiers like ! .+ " into one “part,” replacing the general engine
mechanics of quantifier processing with fast, specialized processing. Thus, the
general engine is short-circuited for these tests.

For example, ! .+ " and !(?:.)+ " ar e logically identical, but for systems with this opti-
mization, the simple ! .+ " is substantially faster than !(?:.)+ ". A few examples: with
Sun’s Java regex package, it’s about 10% faster, but with Ruby and the .NET lan-
guages, it’s about two and a half times faster. With Python, it’s about 50 times
faster, and with PCRE/PHP, it’s about 150 times faster. Because Perl has the
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optimization discussed in the next section, both ! .+ " and !(?:.)+ " ar e the same
speed. (Be sure to see the sidebar below for a discussion on how to interpret
these numbers.)

Needless parentheses elimination

If an implementation can realize that !(?:.)+ " is exactly the same as ! .+ ", it opens
up the latter to the previous optimization.

Under standing Benchmarks in This Chapter
For the most part, benchmarks in this chapter are reported as relative ratios
for a given language. For example, on page 247, I note that a certain opti-
mized construct is 10% faster than the unoptimized construct, at least with
Sun’s Java regex package. In the .NET Framework, the optimized and unopti-
mized constructs differ by a factor of two and a half, but in PCRE, it’s a factor
of about whopping 150×. In Perl, it’s a factor of one (i.e., they are the same
speed—no differ ence).

Fr om this, what can you infer about the speed of one language compared to
another? Absolutely nothing. The 150× speedup for the optimization in PCRE
may mean that the optimization has been implemented particularly well, rel-
ative to the other languages, or it may mean that the unoptimized version is
particularly slow. For the most part, I report very little timing information
about how languages compare against each other, since that’s of interest
mostly for bragging rights among language developers.

But, for what it’s worth, it may be interesting to see the details behind such
dif ferent results as Java’s 10% speedup and PCRE’s 150× speedup. It turns out
that PCRE’s unoptimized !(?:.)+ " is about 11 times slower than Java’s, but its
optimized ! .+ " is about 13 times faster. Java’s and Ruby’s optimized versions
ar e about the same speed, but Ruby’s unoptimized version is about 2.5 times
slower than Java’s unoptimized version. Ruby’s unoptimized version is only
about 10% slower than Python’s unoptimized version, but Python’s optimized
version is about 20 times faster than Ruby’s optimized version.

All of these are slower than Perl’s. Both Perl’s optimized and unoptimized
versions are 10% faster than Python’s fastest. Note that each language has its
own strong points, and these numbers are for only one specific test case.

For an example of a head-to-head comparison, see “War ning: Benchmark
results can cause drowsiness!” in Chapter 8 (+ 376).
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Needless character class elimination

A character class with a single character in it is a bit silly because it invokes the
pr ocessing overhead of a character class, but without any benefits of one. So, a
smarter implementation internally converts something like ![.] " to !\.".

Character following lazy quantifier optimization

With a lazy quantifier, as in !"(.+?)" ", the engine normally must jump between
checking what the quantifier controls (the dot) with checking what comes after
( !"" ). For this and other reasons, lazy quantifiers are generally much slower than
gr eedy ones, especially for greedy ones that are optimized with the simple quanti-
fier optimization discussed two sections ago. Another factor is that if the lazy
quantifier is inside capturing parentheses, control must repeatedly jump in and out
of the capturing, which causes additional overhead.

So, this optimization involves the realization that if a literal character follows the
lazy quantifier, the lazy quantifier can act like a normal greedy quantifier so long
as the engine is not at that literal character. Thus, implementations with this opti-
mization switch to specialized lazy quantifier processing for use in these situations,
which quickly checks the target text for the literal character, bypassing the normal
“skip this attempt” if the target text is not at that special literal character.

Variations on this optimization might include the ability to pre-check for a class of
characters, rather than just a specific literal character (for instance, a pre-check for
![’"] " with ![’"](.+?)["’] " , which is similar to the initial character discrimina-
tion optimization discussed on page 246).

“Excessive” backtracking detection

The problem revealed with the “Reality Check” on page 226 is that certain combi-
nations of quantifiers, such as !(.+)+ ", can create an exponential amount of back-
tracking. One simple way to avoid this is to keep a count of the backtracking, and
abort the match when there’s “too much.” This is certainly useful in the reality-
check situation, but it puts an artificial limit on the amount of text that some regu-
lar expressions can be used with.

For example, if the limit is 10,000 backtracks, ! .+? " can never match text longer
than 10,000 characters, since each character matched involves a backtrack. Work-
ing with these amounts of text is not all that uncommon, particularly when work-
ing with, say, web pages, so the limitation is unfortunate.

For differ ent reasons, some implementations have a limit on the size of the back-
track stack (on how many saved states there can be at any one time). For exam-
ple, Python allows at most 10,000. Like a backtrack limit, it limits the length of text
some regular-expr essions can work with.
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This issue made constructing some of the benchmarks used while researching this
book rather difficult. To get the best results, the timed portion of a benchmark
should do as much of the target work as possible, so I created huge strings and
compar ed the time it took to execute, say, !"(.+)"", !"(.)+"", !"(.)+?"", and
!"([ˆ"])+?" ". To keep meaningful results, I had to limit the length of the strings so
as not to trip the backtrack-count or stack-size limitations. You can see an example
on page 237.

Exponential (a.k.a, super-linear) short-cir cuiting

A better solution to avoid matching forever on an exponential match is to detect
when the match attempt has gone super-linear. You can then make the extra effort
to keep track of the position at which each quantifier’s subexpression has been
attempted, and short-circuit repeat attempts.

It’s actually fairly easy to detect when a match has gone super-linear. A quantifier
should rarely “iterate” (loop) more times than there are characters in the target
string. If it does, it’s a good sign that it may be an exponential match. Having been
given this clue that matching may go on forever, it’s a more complex issue to
detect and eliminate redundant matches, but since the alternative is matching for a
very, very long time, it’s probably a good investment.

One negative side effect of detecting a super-linear match and retur ning a quick
failur e is that a truly inefficient regex now has its inefficiency mostly hidden. Even
with exponential short-circuiting, these matches are much slower than they need
to be, but no longer slow enough to be easily detected by a human (instead of fin-
ishing long after the sun has gone dormant, it may take 1/100 of a second — quick
to us, but still an eternity in computer time).

Still, the overall benefit is probably worth it. There are many people who don’t
car e about regex efficiency — they’r e scar ed of regular expressions and just want
the thing to work, and don’t care how. (You may have been this way before, but I
hope reading this book emboldens you, like the title says, to master the use of
regular expressions.)

State-suppression with possessive quantifier s

After something with a normal quantifier has matched, a number of “try the non-
match option” states have been created (one state per iteration of the quantifier).
Possessive quantifiers (+ 140) don’t leave those states around. This can be accom-
plished by removing the extra states after the quantifier has run its course, or, it
can be done more efficiently by removing the previous iteration’s state while
adding the current iteration’s. (During the matching, one state is always requir ed
so that the regex can continue once the quantified item can no longer match.)

29 April 2003 20:38



The reason the on-the-fly removal is more efficient is because it takes less mem-
ory. Applying ! .+ " leaves one state per character matched, which could consume a
vast amount of memory if the string is long.

Automatic “Possessification”
Recall the example from Chapter 4 (+ 171) where !ˆ\w+: " is applied to
‘Subject’. Once !\w+ " matches to the end of the string, the subsequent colon
can’t match, and the engine must waste the effort of trying !:" at each position
wher e backtracking forces !\w+ " to give up a character. The example then
concluded that we could have the engine avoid that extra work by using
atomic grouping, !ˆ(?>\w+):", or possessive quantifiers, !ˆ\w++: ".

A smart implementation should be able to do this for you. When the regex is
first compiled, the engine can see that what follows the quantifier can’t be
matched by what is quantified, so the quantifier can be automatically turned
into a possessive one.

Although I know of no system that currently has this optimization, I include
it here to encourage developers to consider it, for I believe it can have a sub-
stantial positive impact.

Small quantifier equivalence

Some people like to write !\d\d\d\d " dir ectly, while some like to use a small quan-
tifier and write !\d{4} ". Is one more efficient than the other? For an NFA, the
answer is almost certainly “yes,” but which is faster depends on the tool. If the
tool’s quantifier has been optimized, the !\d{4} " version is likely faster unless the
version without the quantifier can somehow be optimized more. Sound a bit con-
fusing? It is.

My tests show that with Perl, Python, PCRE, and .NET, !\d{4} " is faster by as much
as 20%. On the other hand, with Ruby and Sun’s Java regex package, !\d\d\d\d " is
faster — sometimes several times faster. So, this seems to make it clear that the
small quantifier is better for some, but worse for others. But, it can be more com-
plex than that.

Compar e !==== " with !={4} ". This is a quite differ ent example because this time, the
subject of the repetition is a literal character, and perhaps using !==== " dir ectly
makes it easier for the regex engine to recognize the literal substring. If it can, the
highly effective initial character/substring discrimination optimization (+ 246) can
kick in, if supported. This is exactly the case for Python and Sun’s Java regex
package, for whom the !==== " version can be up to 100× faster than !={4} ".
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Mor e advanced still, Perl, Ruby, and .NET recognize this optimization with either
!==== " or !={4} ", and as such, both are equally fast (and in either case, can be hun-
dr eds or thousands of times faster than the !\d\d\d\d " and !\d{4} " counterparts).
On the other hand, PCRE doesn’t recognize it in either case.

Need cognizance

One simple optimization is if the engine realizes that some aspect of the match
result isn’t needed (say, the capturing aspect of capturing parentheses), it can elim-
inate the work to support them. The ability to detect such a thing is very language
dependent, but this optimization can be gained as easily as allowing an extra
match-time option to disable various high-cost features.

One example of a system that has this optimization is Tcl. Its capturing parenthe-
ses don’t actually capture unless you explicitly ask. Conversely, the .NET Frame-
work regular expressions have an option that allows the programmer to indicate
that capturing parentheses shouldn’t capture.

Techniques for Faster Expressions
The previous pages list the kinds of optimizations that I’ve seen implemented in
Traditional NFA engines. No one program has them all, and whichever ones your
favorite program happens to have now, they’re certain to change sometime in the
futur e. But, just understanding the kinds of optimizations that can be done gives
you an edge in writing more efficient expressions. Combined with the understand-
ing of how a Traditional NFA engine works, this knowledge can be applied in
thr ee power ful ways:

• Wr ite to the optimizations Compose expressions such that known optimiza-
tions (or ones that might be added in the future) can kick in. For example,
using !xx+ " instead of !x+ " can allow a variety of optimizations to more readily
kick in, such as the check of a requir ed character or string (+ 244), or initial-
character discrimination (+ 246).

• Mimic the optimizations Ther e ar e situations where you know your program
doesn’t have a particular optimization, but by mimicking the optimization
yourself, you can potentially see a huge savings. As an example that we’ll
expand on soon, consider adding !(?=t) " to the start of !this;that ", to some-
what mimic the initial-character discrimination (+ 246) in systems that don’t
alr eady deter mine fr om the regex that any match must begin with ‘t’.

• Lead the engine to a match Use your knowledge of how a Traditional NFA

engine works to lead the engine to a match more quickly. Consider the
!this;that " example. Each alternative begins with !th "; if the first’s alternative
can’t match its !th ", the second alternative’s !th " certainly can’t match, so the
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attempt to do so is wasted. To avert that, you can use !th(?:is;at) " instead.
That way, the !th " is tested only once, and the relatively expensive alternation
is avoided until it’s actually needed. And as a bonus, the leading raw-text !th "

of !th(?:is;at) " is exposed, potentially allowing a number of other optimiza-
tions to kick in.

It’s important to realize that efficiency and optimizations can sometimes be touchy.
Ther e ar e a number of issues to keep in mind as you read through the rest of this
section:

• Making a change that would seem to be certainly helpful can, in some situa-
tions, slow things down because you’ve just untweaked some other optimiza-
tion that you didn’t know was being applied.

• If you add something to mimic an optimization that you know doesn’t exist, it
may well turn out that the work requir ed to process what you added actually
takes more time than it saves.

• If you add something to mimic an optimization that you know doesn’t cur-
rently exist, it may defeat or duplicate the real optimization if it’s later added
when the tool is upgraded.

• Along the same lines, contorting an expression to try to pique one kind of
optimization today may prohibit some future, more advantageous optimization
fr om kicking in when the tool is upgraded.

• Contorting an expression for the sake of efficiency may make the expression
mor e dif ficult to understand and maintain.

• The magnitude of the benefit (or harm) a particular change can have is almost
certainly strongly dependent on the data it’s applied to. A change that is bene-
ficial with one set of data may actually be harmful with another type of data.

Let me give a somewhat crazy example: you find !(000;999)$ " in a Perl script, and
decide to turn those capturing parentheses into non-capturing parentheses. This
should make things a bit faster, you think, since the overhead of capturing can
now be eliminated. But surprise, this small and seemingly beneficial change can
slow this regex down by several orders of magnitude (thousands and thousands of
times slower). What!? It turns out that a number of factors come together just right
in this example to cause the end of string/line anchor optimization (+ 246) to be
tur ned of f when non-capturing parentheses are used. I don’t want to dissuade you
fr om using non-capturing parentheses with Perl — their use is beneficial in the vast
majority of cases—but in this particular case, it’s a disaster.

So, testing and benchmarking with the kind of data you expect to use in practice
can help tell you how beneficial or harmful any change will be, but you’ve still got
to weigh all the issues for yourself. That being said, I’ll touch on some techniques
that can be used toward squeezing out the last bit of efficiency out of an engine.
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Common Sense Techniques
Some of the most beneficial things you can do requir e only common sense.

Avoid recompiling

Compile or define the regular expression as few times as possible. With object-ori-
ented handling (+ 95), you have the explicit control to do this. If, for example,
you want to apply a regex in a loop, create the regex object outside of the loop,
then use it repeatedly inside the loop.

With a procedural approach, as with GNU Emacs and Tcl, try to keep the number
of regular expressions used within a loop below the cached threshold of the tool
(+ 243).

With an integrated approach like Perl, try not to use variable interpolation within a
regex inside a loop, because at a minimum, it causes the regex value to be reeval-
uated at each iteration, even if you know the value never changes. (Perl does,
however, provide efficient ways around the problem + 348.)

Use non-capturing parentheses

If you don’t use the capturing aspect of capturing parentheses, use non-capturing
!(?:˙˙˙)" par entheses (+ 45). Besides the direct savings of not having to capture,
ther e can be residual savings because it can make the state needed for backtrack-
ing less complex, and hence faster. It can also open up additional optimizations,
such as needless-parentheses elimination (+ 248).

Don’t add superfluous parentheses

Use parentheses as you need them, but adding them otherwise can prohibit opti-
mizations from kicking in. Unless you need to know the last character matched by
! .+ ", don’t use !(.)+ ". This may seem obvious, but after all, this is the “common
sense techniques” section.

Don’t use superfluous character classes

This may seem to be overly obvious as well, but I’ve often seen expressions like
!ˆ.+[:] " fr om novice programmers. I’m not sure why one would ever use a class
with a single character in it — it incurs the processing overhead of a class without
gaining any multi-character matching benefits of a class. I suppose that when the
character is a metacharacter, such as ![.] " and ![+]", it’s probably because the author
didn’t know about escaping, as with !\." and !\+ ". I see this most often with white-
space in a free-spacing mode (+ 110).
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Somewhat related, users of Perl that read the first edition of this book may some-
times write something like !ˆ[Ff][Rr][Oo][Mm]: " instead of a case-insensitive use
of !ˆfrom: ". Old versions of Perl were very inefficient with their case-insensitive
matching, so I recommended the use of classes like this in some cases. That rec-
ommendation has been lifted, as the case-insensitive inefficiency has been fixed
for some years now.

Use leading anchors

Except in the most rare cases, any regex that begins with ! .+ " should probably
have !ˆ " or !\A " (+ 127) added to the front. If such a regex can’t match when
applied at the beginning of the string, it won’t be able to match any better when
the bump-along applies it starting at the second character, third character, and so
on. Adding the anchor (either explicitly, or auto-added via an optimization + 246)
allows the common start-of-line anchor optimization to kick in, saving a lot of
wasted effort.

Expose Literal Text
Many of the native optimizations we’ve seen in this chapter hinge on the regex
engine’s ability to recognize that there is some span of literal text that must be part
of any successful match. Some engines are better at figuring this out than others,
so here are some hand-optimization techniques that help “expose” literal text,
incr easing the chances that an engine can recognize more of it, allowing the vari-
ous literal-text optimizations to kick in.

“Factor out” required components from quantifier s

Using !xx+ " instead of !x+ " exposes ‘x’ as being requir ed. The same logic applies to
the rewriting of !-{5,7} " as !------{0,2} ".

“Factor out” required components from the front of alternation

Using !th(?:is;at) " rather than !(?:this;that) " exposes that !th " is requir ed. You
can also “factor out” on the right side, when the common text follows the differing
text: !(?:optim;standard)ization ". As the next section describes, these can be
particularly important when what is being factored out includes an anchor.

Expose Anchors
Some of the most fruitful internal regex optimizations are those that take advan-
tage of anchors (like !ˆ ", !$ ", and !\G " ) that tie the expression to one end of the target
string or another. Some engines are not as good as others at understanding when
such an optimization can take place, but there are techniques you can use to help.
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Expose ˆ and \G at the front of expressions

!ˆ(?:abc;123) " and !ˆabc;ˆ123 " ar e logically the same expression, but many more
regex engines can apply the Start of string/line anchor optimization (+ 245) with
the first than the second. So, choosing to write it the first way can make it much
mor e ef ficient. PCRE (and tools that use it) is efficient with either, but most other
NFA tools are much more efficient with the exposed version.

Another differ ence can be seen by comparing !(ˆabc) " and !ˆ(abc) ". The former
doesn’t have many redeeming qualities, as it both “hides” the anchor, and causes
the capturing parentheses to be entered before the anchor is even checked, which
can be inefficient with some systems. Some systems (PCRE, Perl, the .NET lan-
guages) are efficient with either, but others (Ruby and Sun’s Java regex library)
recognize the optimization only with the exposed version.

Python doesn’t seem to have the anchor optimization, so these techniques don’t
curr ently matter for it. Of course, most optimizations in this chapter don’t apply to
Tcl (+ 243).

Expose $ at the end of expressions

This is conceptually very similar to the previous section, where !abc$;123$ " and
!(?:abc;123)$ " ar e logically the same expression, but can be treated differ ently by
the optimizers. Currently, there is a dif ference only for Perl, as only Perl currently
has the End of string/line anchor optimization (+ 246). The optimization kicks in
with !(˙˙˙;˙˙˙)$ " but not with !(˙˙˙$;˙˙˙$)".

Lazy Ver sus Greedy: Be Specific
Usually, the choice between lazy and greedy quantifiers is dictated by the specific
needs of the regex. For example, !ˆ.,:" dif fers substantially from !ˆ.,?:" in that the
for mer one matches until the final colon, while the latter one matches until the
first. But, suppose that you knew that your target data had exactly one colon on it.
If that’s the case, the semantics of both are the same (“match until the colon”), so
it’s probably smart to pick the one that will run fastest.

It’s not always obvious which is best, but as a rule of thumb when the target
strings are long, if you expect the colon to generally be near the start of the string,
using the lazy quantifier allows the engine to find the colon sooner. Use the
gr eedy quantifier if you expect the colon to be toward the end of the string. If the
data is random, and you have no idea which will be more likely, use a greedy
quantifier, as they are generally optimized a bit better than non-greedy quantifier,
especially when what follows in the regex disallows the character following lazy
quantifier optimization (+ 249).
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When the strings to be tested are short, it becomes even less clear. When it comes
down to it, either way is pretty fast, but if you need every last bit of speed, bench-
mark against repr esentative data.

A somewhat related issue is in situations where either a lazy quantifier or a
negated class can be used (such as !ˆ.+?:" vs. !ˆ[ˆ:]+:" ), which should be used?
Again, this is dependent on the data and the language, but with most engines,
using a negated class is much more efficient than a lazy quantifier. One exception
is Perl, because it has that character following lazy quantifier optimization.

Split Into Multiple Regular Expressions
Ther e ar e cases where it’s much faster to apply many small regular expressions
instead of one large one. For a somewhat contrived example, if you wanted to
check a large string to see if it had any of the month names, it would probably be
much faster to use separate checks of !January ", !February ", !March ", etc., than to
use one !January;February;March;˙˙˙ ". With the latter, ther e’s no literal text
known to be requir ed for any match, so an embedded literal string check optimiza-
tion (+ 247) is not possible. With the all-in-one regex, the mechanics of testing
each subexpression at each point in the text can be quite slow.

Her e’s an interesting situation I ran into at about the same time that I was writing
this section. When working with a Perl data-handling module, I realized that I had
a bug with my client program that caused it to sent bogus data that looked like
‘HASH(0x80f60ac)’ instead of the actual data. So, I thought I’d augment the mod-
ule to look for that kind of bogus data and report an error. The straightforward
regex for what I wanted is !\b(?:SCALAR<ARRAY<˙˙˙<HASH)\( 0x [0-9a-fA-F]+ \) ".

This was a situation where efficiency was extremely important. Would this be fast?
Perl has a debugging mode that can tell you about some of the optimizations it
uses with any particular regex (+ 361), so I checked. I hoped to find that the pr e-
check of requir ed string optimization (+ 244) would kick in, since an advanced
enough engine should be able to figure out that ‘(0x’ is requir ed in any match.
Knowing the data that I’d apply this to would almost never have ‘(0x’, I knew that
such a pre-check would eliminate virtually every line. Unfortunately, Perl didn’t
pick this out, so I was left with a regex that would entail a lot of alternation at
every character of every target string. That’s slower than I wanted.

Since I was in the middle of researching and writing about optimizations, I
thought hard about how I could rewrite the regex to garner some of the better
optimizations. One thought I had was to rewrite it along the form of the somewhat
complex !\(0x(?<=(?:SCALAR;˙˙˙;HASH)\(0x)[0-9a-fA-F]+ \) ". The approach
her e is that once !\(0x " has matched, the positive lookbehind (underlined for clar-
ity) makes sure that what came before is allowed, and then checks that what
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comes after is expected as well. The whole reason to go through these regex gym-
nastics is to get the regex to lead with non-optional literal text !\(0x ", which allows
a lot of good optimizations to kick in. In particular, I’d expect that pr e-check of
requir ed string optimization to kick in, as well as the initial character/substring
discrimination optimization (+ 246). I’m sure that these would have made it very
fast, but Perl doesn’t allow variable-length lookbehind (+ 132), so I was back to
squar e one.

However, I realized that since Perl wasn’t doing the pre-check for !\(0x " for me, I
could just do it myself:

if ($data =˜ m/\(0x/
and
$data =˜ m/(?:SCALAR;ARRAY;˙˙˙;HASH)\(0x[0-9a-fA-F]+\)/)

{
# warn about bogus data˙˙˙

}

The check of !\(0x " eliminates virtually every line, so this leaves the check of the
relatively slow full regex for only when the likelihood of a match is high. This cre-
ated a wonderful balance of efficiency (very high) and readability (very high).†

Mimic Initial-Character Discrimination
If the initial-character discrimination optimization (+ 246) is not done by your
implementation, you can mimic it yourself by adding appropriate lookahead
(+ 132) to the start of the regex. The lookahead can “pre-check” that you’re at an
appr opriate starting character before you let the rest of the regex match. For exam-
ple, for !Jan;Feb;˙˙˙;Dec ", use !(?=[JFMASOND])(?:Jan;Feb;˙˙˙;Dec)". The leading
![JFMASOND] " repr esents letters that can begin the month names in English. This
must be done with care, though, because the added overhead of the lookahead
may overshadow the savings. In this particular example, where the lookahead is
pr e-checking for many alternatives that are likely to fail, it is beneficial for most
systems I’ve tested (Java, Perl, Python, Ruby, .NET languages, and PCRE), none of
which apparently are able to derive ![JFMASOND] " fr om !Jan;Feb;˙˙˙;Dec " them-
selves. (PCRE can do it with the use of pcreRstudy, and Tcl, of course, can do it
per fectly + 243.)

A behind-the-scenes check of ![JFMASOND] " by an engine’s native optimization is
certainly faster than the same check explicitly added by us to the regex proper. Is
ther e a way we can modify the regex so that the engine will check natively? Well,
with many systems, you can by using the horribly contorted:

![JFMASOND](?:(?<=J)an<(?<=F)eb<˙˙˙<(?<=D)ec)"

† You can see this in action for yourself. The module in question, DBIx::DWIW (available on CPAN),
allows very easy access to a MySQL database. Jeremy Zawodny and I developed it at Yahoo!.
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I don’t expect you to be able to understand that regex at first sight, but taking the
time to understand what it does, and how, is a good exercise. The simple class
leading the expression can be picked up by most systems’ initial-character dis-
crimination optimization, thereby allowing the transmission itself to effectively
pr e-check ![JFMASOND] ". If the target string has few matching characters, the result
can be substantially faster than the !Jan;˙˙˙;Dec " original, or our prepended-look-
ahead. But, if the target string has many first-character matches, the extra overhead
of all the added lookbehind can actually make things slower. On top of this worry,
it’s certainly a much less readable regular expression. But, the exercise is interest-
ing and instructive nevertheless.

Don’t do this with Tcl

The previous example shows how hand tweaking has the potential to really make
things worse. The sidebar on page 243 notes that regular expressions in Tcl are
mostly immune to the form of the expression, so for the most part attempts to
hand optimize are meaningless. Well, here’s an example where it does matter.
Adding the explicit !(?=[JFMASOND]) " pr e-check causes Tcl to slow down by a fac-
tor of about 100× in my tests.

Use Atomic Grouping and Possessive Quantifier s
Ther e ar e many cases when atomic grouping (+ 137) and possessive quantifiers
(+ 140) can greatly increase the match speed, even though they don’t change the
kind of matches that are possible. For example, if !ˆ[ˆ:]+: " can’t match the first
time the colon is attempted, it certainly can’t match after backtracking back into
the ![ˆ:]+ ", since any character “given up” by that backtracking, by definition, can’t
match a colon. The use of atomic grouping !ˆ(?>[ˆ:]+):" or a possessive quanti-
fier !ˆ[ˆ:]++:" causes the states from the plus to be thrown away, or not created in
the first place. Since this leaves nothing for the engine to backtrack to, it ensures
that it doesn’t backtrack unfruitfully. (The sidebar on page 251 suggests that this
can be done automatically by a smart enough engine.)

However, I must stress that misusing either of these constructs can inadvertently
change what kind of matches are allowed, so great care must be taken. For exam-
ple, using them with !ˆ.+:", as with !ˆ(?>.+):", guarantees failure. The entire line is
matched by ! .+ ", and this includes any colon that the later !:" needs. The atomic
gr ouping removes the ability for the backtracking requir ed to let !:" match, so fail-
ur e is guaranteed.

Techniques for Faster Expressions 259
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260 Chapter 6: Crafting an Efficient Expression

Lead the Engine to a Match
One concept that goes a long way toward more efficient NFA regular expressions
is pushing “control” issues as far back in the matching process as possible. One
example we’ve seen already is the use of !th(?:is;at) " instead of !this;that ".
With the latter, the alternation is a top-level control issue, but with the former, the
relatively expensive alternation is not considered until !th " has been matched.

The next section, “Unrolling the Loop,” is an advanced form of this, but there are a
few simple techniques I can mention here.

Put the most likely alter native fir st

Thr oughout the book, we’ve seen a number of situations where the order in
which alternatives are presented matters greatly (+ 28, 176, 189, 216). In such situ-
ations, the correctness of the match take precedence over optimization, but other-
wise, if the order doesn’t matter to the correctness, you can gain some efficiency
by placing the most-likely alternatives first.

For example, when building a regex to match a hostname (+ 205) and listing the
final domain parts, some might find it appealing to list them in alphabetical order,
as with !(?:aero;biz;com;coop;˙˙˙)". However, some of those early in the list are
new and not currently popular, so why waste the time to check for them first
when you know they will likely fail most of the time? An arrangement with the
mor e popular first, such as !(?:com;edu;org;net;˙˙˙)", is likely to lead to a match
mor e quickly, more often.

Of course, this matters only for a Traditional NFA engine, and then, only for when
ther e is a match. With a POSIX NFA, or with a failure, all alternatives must be
checked and so the ordering doesn’t matter.

Distr ibute into the end of alternation

Continuing with a convenient example, compare !(?:com<edu<˙˙˙<[a-z][a-z])\b "

with !com\b;edu\b;˙˙˙\b;[a-z][a-z]\b ". In the latter, the !\b " after the alternation
has been distributed onto the end of each alternative. The possible benefit is that
it may allow an alternative that matches, but whose match would have been
undone by the !\b " after the alternation, to fail a bit quicker, inside the alternation.
This allows the failure to be recognized before the overhead of exiting the alterna-
tion is needed.

This is perhaps not the best example to show the value of this technique, since it
shows promise only for the specific situation when an alternative is likely to
match, but what comes right after is likely to fail. We’ll see a better example of this
concept later in this chapter—look for the discussion of $OTHER+ on page 280.
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This optimization can be dangerous. One very important concern in applying
this hand optimization is that you take care not to defeat more profitable native
optimizations. For example, if the “distributed” subexpression is literal text, as with
the distribution of the colon from !(?:this<that):)" to !this:;that:", you’r e
dir ectly conflicting with some of the ideas in the “Expose Literal Text” section
(+ 255). All things being equal, I think that those optimizations would be much
mor e fruitful, so be careful not to defeat them in favor of this one.

A similar warning applies to distributing a regex-ending !$ " on systems that benefit
fr om an exposed end-anchor (+ 256). On such systems, !(?:com<edu<˙˙˙)$ " is
much faster than the distributed !com$;edu$;˙˙˙$ ". (Among the many systems I
tested, only Perl currently supports this.)

Unrolling the Loop
Regardless of what native optimizations a system may support, perhaps the most
important gains are to be had by understanding the basics of how the engine
works, and writing expressions that help lead the engine to a match. So, now that
we’ve reviewed the basics in excruciating detail, let’s step up to the big leagues
with a technique I call “unrolling the loop.” It’s effective for speeding up certain
common expressions. Using it, for example, to transform the neverending match
fr om near the start of this chapter (+ 226) results in an expression that actually fin-
ishes a non-match in our lifetime, and as a bonus is faster with a match as well.

The “loop” in the name is the implicit loop imparted by the star in an expression
that fits a !(this;that;˙˙˙)+ " patter n. Indeed, our earlier !"(\\.;[ˆ"\\]+),"" nev-
er ending match fits this pattern. Considering that it takes approximately forever to
report a non-match, it’s a good example to try to speed up!

Ther e ar e two competing roads one can take to arrive at this technique:

1. We can examine which parts of !(\\.<[ˆ"\\]+), " actually succeed during a
variety of sample matches, leaving a trail of used subexpressions in its wake.
We can then reconstruct an efficient expression based upon the patterns we
see emerge. The (perhaps far-fetched) mental image I have is that of a big
ball, repr esenting a !(˙˙˙)+ " regex, being rolled over some text. The parts inside
(˙˙˙) that are actually used then stick to the text they match, leaving a trail of
subexpr essions behind like a dirty ball rolling across the carpet.

2. Another approach takes a higher-level look at the construct we want to
match. We’ll make an informed assumption about the likely target strings,
allowing us to take advantage of what we believe will be the common situa-
tion. Using this point of view, we can construct an efficient expression.

Either way, the resulting expressions are identical. I’ll begin from the “unrolling”
point of view, and then converge on the same result from the higher-level view.

Unrolling the Loop 261
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262 Chapter 6: Crafting an Efficient Expression

To keep the examples as uncluttered and as widely usable as possible, I’ll use !(˙˙˙)"

for all parentheses. If !(?:˙˙˙)" non-capturing parentheses are supported, their use
imparts a further efficiency benefit. Later, we’ll also look at using atomic grouping
(+ 137) and possessive quantifiers (+ 140).

Method 1: Building a Regex From Past Experiences
In analyzing !"(\\.;[ˆ"\\]+)+"", it’s instructive to look at some matching strings
to see exactly which subexpressions are used during the overall match. For exam-
ple, with ‘"hi"’, the expression effectively used is just !"[ˆ"\\]+ " ". This illustrates
that the overall match used the initial !"", one application of the alternative
![ˆ"\\]+ ", and the closing !"". With

"he said \"hi there\" and left"

it is !"[ˆ"\\]+ \\.\\.[ˆ"\\]+ \\.\\.[ˆ"\\]+"". In this example, as well as in Table
6-2, I’ve marked the expressions to make the patterns apparent. It would be nice if
we could construct a specific regex for each particular input string. That’s not pos-
sible, but we can still identify common patterns to construct a more efficient, yet
still general, regular expression.

Table 6-2: Unr olling-the-Loop Example Cases
Target String Effective Expression

"hi there" "[ˆ"\\]+"

"just one \" here" "[ˆ"\\]+\\.\\.[ˆ"\\]+"

"some \"quoted\" things" "[ˆ"\\]+\\.\\.[ˆ"\\]+\\"\\"[ˆ"\\]+"

"with \"a\" and \"b\"." "[ˆ"\\]+\\.\\.[ˆ"\\]+\\.\\.[ˆ"\\]+\\.\\.[ˆ"\\]+\\.\\.[ˆ"\\]+"

"\"ok\"\n" "\\.\\.[ˆ"\\]+\\.\\.\\.\\."

"empty \"\" quote" "[ˆ"\\]+\\.\\.\\.\\.[ˆ"\\]+"

For the moment, let’s concentrate on the first four examples in Table 6-2. I’ve
underlined the portions that refer to “an escaped item, followed by further normal
characters.” This is the key point: in each case, the expression between the quotes
begins with ![ˆ"\\]+ " and is followed by some number of !\\.\\.[ˆ"\\]+ " sequences.
Rephrasing this as a regular expression, we get ![ˆ"\\]+ (\\.\\.[ˆ"\\]+)+ ". This is
a specific example of a general pattern that can be used for constructing many
useful expressions.

Constr ucting a general “unrolling-the-loop” pattern

In matching the double-quoted string, the quote itself and the escape are “special”
— the quote because it can end the string, and the escape because it means that
whatever follows won’t end the string. Everything else, ![ˆ"\\] ", is “nor mal.” Look-
ing at how these were combined to create ![ˆ"\\]+ (\\.\\.[ˆ"\\]+)+ ", we can see
that it fits the general pattern !nor mal+( specialspecial normal+)+ ".
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Adding in the opening and closing quote, we get !"[ˆ"\\]+ (\\.\\.[ˆ"\\]+)+"".
Unfortunately, this won’t match the last two examples in Table 6-2. The problem,
essentially, is that our current expression’s two ![ˆ"\\]+ " requir e a nor mal charac-
ter at the start of the string and after any special character. As the examples show,
that’s not always appropriate — the string might start or end with an escaped item,
or there might be two escaped items in a row.

We could try changing the two pluses to stars: !"[ˆ"\\],(\\.\\.[ˆ"\\],)+"". Does
this have the desired effect? More importantly, does it have any undesirable
ef fects?

As far as desirable effects, it is easy to see that all the examples now match. In
fact, even a string such as "\"\"\"" now matches. This is good. However, we
can’t make such a major change without being quite sure ther e ar e no undesirable
ef fects. Could anything other than a legal double-quoted string match? Can a legal
double-quoted string not match? What about efficiency?

Let’s look at !"[ˆ"\\]+(\\.\\.[ˆ"\\]+)+"" car efully. The leading !"[ˆ"\\]+ " is
applied only once and doesn’t seem dangerous: it matches the requir ed opening
quote and any normal characters that might follow. No danger there. The subse-
quent !(\\.\\.[ˆ"\\]+)+ " is wrapped by (˙˙˙),, so is allowed to match zero times.
That means that removing it should still leave a valid expression. Doing so, we get
!"[ˆ"\\]+"", which is certainly fine — it repr esents the common situation where
ther e ar e no escaped items.

On the other hand, if !(\\.\\.[ˆ"\\]+)+ " matches once, we have an effective
!"[ˆ"\\]+ \\.\\. [ˆ"\\]+"". Even if the trailing ![ˆ"\\]+ " matches nothing (making it
an effective !"[ˆ"\\]+ \\.\\."" ), there are no problems. Continuing the analysis in a
similar way (if I can remember my high school algebra, it’s “by induction”), we
find that there are, indeed, no problems with the proposed changes.

So, that leaves us with the final expression to match a double-quoted string with
escaped double quotes inside:

!"[ˆ"\\],(\\.\\.[ˆ"\\],)+""

The Real “Unrolling-the-Loop” Patter n
Putting it all together, then, our expression to match a double-quoted string with
escaped-items is !"[ˆ"\\]+(\\.[ˆ"\\]+)+"". This matches exactly the same
strings as our alternation version, and it fails on the same strings that the alterna-
tion version fails on. But, this unrolled version has the added benefit of finishing
in our lifetime because it is much more efficient and avoids the neverending-match
pr oblem.
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264 Chapter 6: Crafting an Efficient Expression

The general pattern for unrolling the loop is:

! opening normal+ ( specialspecial normal+)+ closing "

Avoiding the neverending match

Thr ee extr emely important points prevent !"[ˆ"\\]+(\\.\\.[ˆ"\\]+)+"" fr om
becoming a neverending match:

The star t of special and normal must never inter sect
The special and nor mal subexpr essions must be written such that they can never
match at the same point. With our ongoing example, where nor mal is ![ˆ"\\] " and
special is !\\. ", it’s clear that they can never begin a match at the same character
since the latter one requir es a leading backslash, while the former one explicitly
disallows a leading backslash.

On the other hand, !\\. " and ![ˆ"] " can both match starting at ‘"Hello\n"’, so they
ar e inappr opriate as special or nor mal. If ther e is a way they can match starting at
the same location, it’s not clear which should be used at such a point, and the
non-deter minism cr eates a never ending match. The ‘makudonarudo’ example illus-
trates this graphically (+ 227). A failing match (or any kind of match attempt with
POSIX NFA engines) has to test all these possibilities and permutations. That’s too
bad, since the whole reason to re-engineer in the first place was to avoid this.

If we ensure that special and nor mal can never match at the same point, special
acts to checkpoint the nondeterminism that would arise when multiple applica-
tions of nor mal could, by differ ent iterations of the !(˙˙˙)+ " loop, match the same
text. If we ensure that special and nor mal can never match at the same point,
ther e is exactly one “sequence” of specials and nor mals in which a particular tar-
get string matches. Testing this one sequence is much faster than testing a hundred
million of them, and thus a neverending match is avoided.

Special must not match nothingness
The second important point is that special must always match at least one charac-
ter if it matches anything at all. If it were able to match without consuming charac-
ters, adjacent normal characters would be able to be matched by differ ent
iterations of !( specialspecial normal+), ", bringing us right back to the basic (˙˙˙+)+

pr oblem.

For example, choosing a special of !(\\.)+ " violates this point. In trying to match
the ill-fated !"[ˆ"\\]+((\\.),(\\.),[ˆ"\\]+)+"" against ‘"Tubby’ (which fails), the
engine must try every permutation of how multiple ![ˆ"\\]+ " might match ‘Tubby’
befor e concluding that the match is a failure. Since special can match nothingness,
it doesn’t act as the checkpoint it purports to be.
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Special must be atomic
Text matched by one application of special must not be able to be matched by
multiple applications of special. Consider matching a string of optional Pascal { ˙˙˙}

comments and spaces. A regex to match the comment part is !\{[ˆ}]+\}", so the
whole (neverending) expression becomes !(\{[ˆ}]+\}< +)+ ". With this regex, you
might consider special and nor mal to be:

special normal

! + " !\{[ˆ}]+\}"

Plugging this into the !nor mal+( specialspecial normal+)+ " patter n we’ve developed, we
get: !(\{[ˆ}]+\})+( ++(\{[ˆ}]+\})+)+ ". Now, let’s look at a string:

{comment} {another}

A sequence of multiple spaces could be matched by a single ! + ", by many ! + "

(each matching a single space), or by various combinations of ! + " matching differ-
ing numbers of spaces. This is directly analogous to our ‘makudonarudo’ problem.

The root of the problem is that special is able to match a smaller amount of text
within a larger amount that it could also match, and is able to do so multiple times
thanks to (˙˙˙)+. The nondeterminism opens up the “many ways to match the
same text” can of worms.

If there is an overall match, it is likely that only the all-at-once ! + " will happen just
once, but if no match is possible (such as might happen if this is used as a subex-
pr ession of a larger regex that could possibly fail), the engine must work through
each permutation of the effective !( +)+ " to each series of multiple spaces. That
takes time, but without any hope for a match. Since special is supposed to act as
the checkpoint, there is nothing to check its nondeter minism in this situation.

The solution is to ensure that special can match only a fixed number of spaces.
Since it must match at least one, but could match more, we simply choose ! " and
let multiple applications of special match multiple spaces via the enclosing !(˙˙˙)+ ".

This example is useful for discussion, but in real-life use, it’s probably more effi-
cient to swap the nor mal and special expr essions to come up with

! +( \{[ˆ}]+\}\{[ˆ}]+\} +)+ "

because I would suspect that a Pascal program has more spaces than comments,
and it’s more efficient to have nor mal be the most common case.

General things to look out for

Once you internalize these rules (which might take several readings and some
practical experience), you can generalize them into guidelines to help identify reg-
ular expressions susceptible to a neverending match. Having multiple levels of
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266 Chapter 6: Crafting an Efficient Expression

quantifiers, such as !(˙˙˙+)+ ", is an important warning sign, but many such expres-
sions are per fectly valid. Examples include:

• !(Re: +)+ ", to match any number of ‘Re:’ sequences (such as might be used to
clean up a ‘Subject: Re: Re: Re: hey’ subject line).

• !( +\$[0-9]+)+ ", to match dollar amounts, possibly space-separated.

• !(.+\n)+ ", to match one or more lines. (Actually, if dot can match a newline,
and if there is anything following this subexpression that could cause it to fail,
this would become a quintessential neverending match.)

These are okay because each has something to checkpoint the match, keeping a
lid on the “many ways to match the same text” can of worms. In the first, it’s !Re: ",
in the second it’s !\$ ", and in the third (when dot doesn’t match newline), it’s !\n ".

Method 2: A Top-Down View
Recall that I said that there wer e two paths to the same “unrolling the loop”
expr ession. In this second path, we start by matching only what’s most common in
the target, then adding what’s needed to handle the rare cases. Let’s consider what
the neverending !(\\.\\.<[ˆ"\\]+), " attempts to accomplish and where it will likely
be used. Normally, I would think, a quoted string would have more regular char-
acters than escaped items, so ![ˆ"\\]+ " does the bulk of the work. The !\\. " is
needed only to take care of the occasional escaped item. Using alternation to
allow either makes a useful regex, but it’s too bad that we need to compromise
the efficiency of the whole match for the sake of a few (or more commonly, no)
escaped characters.

If we think that ![ˆ"\\]+ " will normally match most of the body of the string, we
know that once it finishes we can expect either the closing quote or an escaped
item. If we have an escape, we want to allow one more character (whatever it
might be), and then match more of the bulk with another ![ˆ"\\]+ ". Every time
![ˆ"\\]+ " ends, we are in the same position we were befor e: expecting either the
closing quote or another escape.

Expr essing this naturally as a single expression, we arrive at the same expression
we had early in Method 1: !"[ˆ"\\]+ ( \\.\\.[ˆ"\\]+)+"". Each time the matching
reaches the point marked by , we know that we’re expecting either a backslash
or a closing quote. If the backslash can match, we take it, the character that fol-
lows, and more text until the next “expecting a quote or backslash” point.

As in the previous method, we need to allow for when the initial non-quote seg-
ment, or inter-quote segments, are empty. We can do this by changing the two
pluses to stars, which results in the same expression as we ended up with on
page 263.
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Method 3: An Internet Hostname
I promised two methods to arrive at the unr olling-the-loop technique, but I’d like
to present something that can be considered a third. It struck me while working
with a regex to match a hostname such as www.yahoo.com. A hostname is essen-
tially dot-separated lists of subdomain names, and exactly what’s allowed for one
subdomain name is fairly complex to match (+ 203), so to keep this example less
clutter ed, we’ll just use ![a-z]+ " to match a subdomain.

If a subdomain is ![a-z]+ " and we want a dot-separated list of them, we need to
match one subdomain first. After that, further subdomains requir e a leading
period. Expressing this literally, we get: ![a-z]+ ( \.[a-z]+ )+ ". Now, if I add an
underline and some gray, ![a-z]+ (\.\.[a-z]+)+ ", it sur e looks like it almost fits a
very familiar pattern, doesn’t it!

To illustrate the similarity, let’s try to map this to our double-quoted string exam-
ple. If we consider a string to be sequences of our nor mal ![ˆ\\"] ", separated by
special !\\. ", all within ‘"˙˙˙"’, we can plug them into our unrolling-the-loop pattern
to form !"[ˆ\\"]+ (\\.\\. [ˆ\\"]+)+"", which is exactly what we had at one point
while discussing Method 1. This means that conceptually, we can take the view
we used with a hostname — stuf f separated by separators — and apply it to double-
quoted strings, to give us “sequences of non-escaped stuff separated by escaped
items.” This might not seem intuitive, but it yields an interesting path to what
we’ve already seen.

The similarity is interesting, but so are the differ ences. With Method 1, we went on
to change the regex to allow empty spans of nor mal befor e and after each special,
but we don’t want to do that here because a subdomain part cannot be empty. So,
even though this example isn’t exactly the same as the previous ones, it’s in the
same class, showing that the unrolling technique is powerful and flexible.

Ther e ar e two differ ences between this and the subdomain example:

• Domain names don’t have delimiters at their start and end.

• The nor mal part of a subdomain can never be empty (meaning two periods
ar e not allowed in a row, and can neither start nor end the match). With a
double-quoted string, there is no requir ement that there be any nor mal parts
at all, even though they are likely, given our assumptions about the data.
That’s why we were able to change the ![ˆ\\"]+ " to ![ˆ\\"]+ ". We can’t do
that with the subdomain example because special repr esents a separator,
which is requir ed.
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268 Chapter 6: Crafting an Efficient Expression

Obser vations
Recapping the double-quoted string example, I see many benefits to our expres-
sion, !"[ˆ"\\]+(\\.[ˆ"\\]+)+"", and few pitfalls.

Pitfalls:

• Reada bility The biggest pitfall is that the original !"([ˆ"\\];\\.)+"" is
pr obably easier to understand at first glance. We’ve traded a bit of readability
for efficiency.

• Maintaina bility Maintaining !"[ˆ"\\]+(\\.[ˆ"\\]+)+"" might be more dif fi-
cult, since the two copies of ![ˆ"\\] " must be kept identical across any
changes. We’ve traded a bit of maintainability for efficiency.

Benefits:

• Speed The new regex doesn’t buckle under when no match is possible, or
when used with a POSIX NFA. By car efully crafting the expression to allow
only one way for any particular span of text to be matched, the engine quickly
comes to the conclusion that non-matching text indeed does not match.

• More speed The regex “flows” well, a subject taken up in “The Freeflowing
Regex” (+ 277). In my benchmarks with a Traditional NFA, the unrolled ver-
sion is consistently faster than the old alternation version. This is true even for
successful matches, where the old version did not suffer the lockup problem.

Using Atomic Grouping and Possessive Quantifier s
The problem with our original neverending match regex, !"(\\.;[ˆ"\\]+ )+"", is
that it bogs down when there is no match. When there is a match, though, it’s
quite fast. It’s quick to find the match because the ![ˆ"\\]+ " component is what
matches most of the target string (the nor mal in the previous discussion). Because
![˙˙˙]+ " is usually optimized for speed (+ 247), and because this one component
handles most of the characters, the overhead of the alternation and the outer
!(˙˙˙)+ " quantifier is greatly reduced.

So, the problem with !"(\\.;[ˆ"\\]+ )+"", is that it bogs down on a non-match,
backtracking over and over to what we know will always be unfruitful states. We
know they’re unfruitful because they’re just testing differ ent per mutations of the
same thing. (If !abc " doesn’t match ‘foo’, neither will !abc " or !abc " (or !abc ", !abc ", or
!abc ", for that matter). So, if we could throw those states away, this regex would
report the non-match quickly.

Ther e ar e two ways to actually throw away (or otherwise ignore) states: atomic
gr ouping (+ 137) and possessive quantifiers (+ 140). At the time of this writing,
only Sun’s regex package for Java supports possessive quantifiers, but I believe
they’ll gain popularity soon, so I’ll cover them here.
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Befor e I get into the elimination of the backtracking, I’d like to swap the order of
the alternatives from !"(\\.<[ˆ"\\]+),"" to !"([ˆ"\\]+<\\.),"", as this places
the component matching “normal” text first. As has been noted a few times in the
last several chapters, when two or more alter natives can potentially match at the
same location, care must be taken when selecting their order, as that order can
influence what exactly is matched. But if, as in this case, all alternatives are mutu-
ally exclusive (none can match at a point where another can match), the order
doesn’t matter from a correctness point of view, so the order can be chosen for
clarity or efficiency.

Making a neverending match safe with possessive quantifier s

Our neverending regex !"([ˆ"\\]+<\\.),"" has two quantifiers. We can make
one possessive, the other possessive, or both possessive. Does it matter? Well,
most of the backtracking troubles were due to the states left by the ![˙˙˙]+ ", so mak-
ing that possessive is my first thought. Doing so yields a regex that’s pretty fast,
even when there’s no match. However, making the outer !(˙˙˙)+ " possessive throws
away all the states from inside the parentheses, which includes both those of
![˙˙˙]+ " and of the alternation, so if I had to pick one, I’d pick that one.

But I don’t have to pick one because I can make both possessive. Which of the
thr ee situations is fastest probably depends a lot on how optimized possessive
quantifiers are. Currently, they are supported only by Sun’s Java regex package, so
my testing has been limited, but I’ve run all three combinations through tests with
it, and found examples where one combination or the other is faster. I would
expect the situation where both are possessive could be the fastest, so these
results tend to make me believe that Sun hasn’t yet optimized them to their fullest.

Making a neverending match safe with atomic grouping

Looking to add atomic grouping to !"([ˆ"\\]+<\\.),"", it’s tempting to replace
the normal parentheses with atomic ones: !"(?>[ˆ"\\]+<\\.),"". It’s important
to realize that !(?>˙˙˙;˙˙˙)+ " is very differ ent fr om the possessive !(˙˙˙;˙˙˙)++ " in the
pr evious section when it comes to the states that are thr own away.

The possessive !(˙˙˙;˙˙˙)++ " leaves no states when it’s done. On the other hand, the
atomic grouping in !(?>˙˙˙;˙˙˙)+ " mer ely eliminates any states left by each alterna-
tive, and by the alternation itself. The star is outside the atomic grouping, so is
unaf fected by it and still leaves all its “can try skipping this match” states. That
means that the individual matches can still be undone via backtracking. We want
to eliminate the outer quantifier’s states as well, so we need an outer set of atomic
gr ouping. That’s why !(?>(˙˙˙;˙˙˙)+)" is needed to mimic the possessive !(˙˙˙;˙˙˙)++ ".
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!(˙˙˙;˙˙˙)++ " and !(?>˙˙˙;˙˙˙)+ " ar e both certainly helpful in solving the neverending
match, but which states are thr own away, and when, are dif ferent. (For more on
the differ ence between the two, see page 173.)

Shor t Unrolling Examples
Now that we’ve got the basic idea of unrolling under our belt, let’s look at some
examples from earlier in the book, and see how unrolling applies to them.

Unrolling “multi-character” quotes

In Chapter 4 on page 167, we saw this example:

<B> # Match the opening <B>
( # Now, only as many of the following as needed . . .
(?! </?B> ) # If not <B>, and not </B> . . .
. # . . . any character is okay

)+ #
</B> # . . . until the closing delimiter can match.

With a nor mal of ![ˆ<] " and a special of !(?! </?B>) < ", her e’s the unrolled version:

<B> # Match the opening <B>
(?> [ˆ<]+ ) # Now match any "normal" . . .
(?> # Any amount of . . .

(?! </? B> ) # if not at <B> or </B>,
< # match one "special"
[ˆ<]+ # and then any amount of "normal"

)+ #
</B> # And finally the closing </B>

The use of atomic grouping is not requir ed, but does make the expression faster
when there’s only a partial match.

Unrolling the continuation-line example

The continuation-line example from the start of the previous chapter (+ 186) left
of f with !ˆ\w+ =([ˆ\n \\]<\\ .), ". Well, that certainly looks ripe for unrolling:

ˆ \w+ = # leading field name and ’=’
# Now read (and capture) the value . . .
(

(?> [ˆ\n\\]+ ) # "nor mal"*
(?> \\. [ˆ\n\\]+ )+ # ( "special" "normal"* )*

)

As with earlier examples of unrolling, the atomic grouping is not requir ed for this
to work, but helps to allow the engine to announce a failure mor e quickly.
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Unrolling the CSV rege x

Chapter 5 has a long discussion of CSV pr ocessing, which finally worked its way to
this snippet, from page 216:

(?: ̂;,)
(?: # Now, match either a double-quoted field (inside, paired double quotes are allowed) . . .

" # (double-quoted field’s opening quote)
( (?: [ˆ"] ; "" )+ )

" # (double-quoted field’s closing quote)
;
# . . . or, some non-quote/non-comma text . . .

( [ˆ",]+ )
)

The text then went on to suggest adding !\G " to the front, just to be sure that the
bump-along didn’t get us in trouble as it had throughout the example, and some
other efficiency suggestions. Now that we know about unrolling, let’s see where in
this example we can apply it.

Well, the part to match a Microsoft CSV string, !(?: [ˆ"];"" )+ ", certainly looks
inviting. In fact, the way it’s presented already has our nor mal and special picked
out for us: ![ˆ"] " and !"" ". Her e’s how it looks with that part unrolled, plugged back
into the original Perl snippet to process each field:

while ($line =˜ m{
\G(?: ̂;,)
(?:

# Either a double-quoted field (with "" for each ")˙˙˙

" # field’s opening quote
( (?> [ˆ"], ) (?> "" [ˆ"], ), )

" # field’s closing quote
# ..or˙˙˙

;
# ˙˙˙ some non-quote/non-comma text....
( [ˆ",]+ )

)
}gx)

{
if (defined $2) {

$field = $2;
} else {

$field = $1;
$field =˜ s/""/"/g;

}
print "[$field]"; # print the field, for debugging
Can work with $field now . . .

}

As with the other examples, the atomic grouping is not requir ed, but may help
with efficiency.
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Unrolling C Comments
I’d like to give an example of unrolling the loop with a somewhat more complex
target. In the C language, comments begin with /,, end with ,/, and can span
acr oss lines, but can’t be nested. (C++, Java, and C# also allow this type of com-
ment.) An expression to match such a comment might be useful in a variety of sit-
uations, such as in constructing a filter to remove them. It was when working on
this problem that I first came up with my unrolling technique, and the technique
has since become a staple in my regex arsenal.

To unroll or to not unroll . . .

I originally developed the regex that is the subject of this section back in the early
1990s. Prior to that, matching C comments with a regular expression was consid-
er ed dif ficult at best, if not impossible, so when I developed something that
worked, it became the standard way to match C comments. But, when Perl intro-
duced lazy quantifiers, a much simpler approach became evident: a dot-matches-
all application of !/\+.+?\+/".

Had lazy quantifiers been around when I first developed the unrolling technique, I
might not have bothered to do so, for the need wouldn’t have been so apparent.
Yet, such a solution was still valuable because with that first version of Perl sup-
porting lazy quantifiers, the unrolled version is faster than the lazy-quantifier ver-
sion by a significant amount (in the variety of tests I’ve done, anywhere from
about 50% faster, to 3.6× faster).

Yet, with today’s Perl and its differ ent mix of optimizations, those numbers go the
other way, with the lazy-quantifier version running anywhere from about 50%
faster to 5.5× faster. So, with modern versions of Perl, I’d just use !/\+.+?\+/" to
match C comments and be done with it.

Does this mean that the unrolling-the-loop technique is no longer useful for
matching C comments? Well, if an engine doesn’t support lazy quantifiers, the abil-
ity to use the unrolling technique certainly becomes appealing. And not all regex
engines have the same mix of optimizations: the unrolling technique is faster with
every other language I’ve tested — in my tests, up to 60 times faster! The unrolling
technique is definitely useful, so the remainder of this example explores how to
apply it to matching C comments.

Since there are no escapes to be recognized within a C comment the way \" must
be recognized within a double-quoted string, one might think that this should
make things simpler, but actually, it’s much more complex. This is because +/, the
“ending quote,” is mor e than one character long. The simple !/\+[ˆ+]+\+/" might
look good, but that doesn’t match /,+ some comment here +,/ because it has a
‘+’ within. It should be matched, so we need a new approach.
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Avoiding regex headaches
You might find that !/\+[ˆ+]+\+/" is a bit difficult to read, even with the subtle
easy-on-the-eyes spacing I’ve used in typesetting this book. It is unfortunate for
our eyes that one of the comment’s delimiting characters, ‘+’, is also a regex meta-
character. The resulting backslashes are enough to give me a headache. To make
things more readable during this example, we’ll consider /x ˙˙˙x/, rather than
/+ ˙˙˙ +/, to be our target comment. This superficial cosmetic change allows
!/\+[ˆ+]+\+/" to be written as the more readable !/x [ˆx]+ x/". As we work
thr ough the example and the expression becomes more complex, our eyes will
thank us for the reprieve.

A direct approach

In Chapter 5 (+ 196), I gave a standard formula for matching delimited text:

1. Match the opening delimiter

2. Match the main text: really “match anything that is not the ending delimiter”

3. Match the ending delimiter

Our pseudo comments, with /x and x/ as our opening and closing delimiters,
appear to fit into this pattern. Our difficulties begin when we try to match “any-
thing that is not the ending delimiter.” When the ending delimiter is a single char-
acter, we can use a negated character class to match all characters except that
delimiter. A character class can’t be used for multi-character subexpressions, but if
you have negative lookahead, you can use something like !(?: (?!x/). )+ ". This is
essentially !(anything not x/)+ ".

Using that, we get !/x(?: (?!x/). )+x/" to match comments. It works perfectly
well, but it can be quite slow (in some of my tests, hundreds of times slower than
what we’ll develop later in this section). This approach can be useful, but it’s of lit-
tle use in this particular case because any flavor that supports lookahead almost
certainly supports lazy quantifiers, so if efficiency is not an issue, you can just use
!/x .+?x/" and be done with it.

So, continuing with the direct, three-step approach, is there another way to match
until the first x/? Two ideas might come to mind. One method is to consider x to
be the start of the ending delimiter. That means we’d match anything not x, and
allow an x if it is followed by something other than a slash. This makes the “any-
thing that is not the ending delimiter” one of:

• Anything that is not x: ![ˆx] "

• x, so long as not followed by a slash: !x[ˆ/] "

This yields !([ˆx]<x[ˆ/])+ " to match the main text, and !/x([ˆx]<x[ˆ/])+x/" to
match the entire pseudo comment. As we’ll see, this doesn’t work.
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Another approach is to consider a slash as the ending delimiter, but only if pre-
ceded by x. This makes the “anything not the ending delimiter” one of:

• Anything that is not a slash: ![ˆ/] "

• A slash, so long as not preceded by x: ![ˆx]/ "

This yields !([ˆ/]<[ˆx]/)+ " to match the main text, and !/x([ˆ/]<[ˆx]/)+x/" to
match the whole comment.

Unfortunately, it also doesn’t work.

For !/x([ˆx]<x[ˆ/])+x/ ", consider ‘/xx foo xx/’ —  after matching ‘foo ’, the
first closing x is matched by !x[ˆ/] ", which is fine. But then, !x[ˆ/] " matches xx/,
which is the x that should be ending the comment. This opens the door for the
next iteration’s ![ˆx] " to match the slash, thereby errantly matching past the closing
x/.

As for !/x([ˆ/]<[ˆx]/)+x/ ", it can’t match ‘/x/ foo /x/’ (the whole of which is
a comment and should be matched). In other cases, it can march past the end of a
comment that has a slash immediately after its end (in a way similar to the other
method). In such a case, the backtracking involved is perhaps a bit confusing, so it
should be instructive to understand why !/x([ˆ/]<[ˆx]/)+x/" matches

years = days /x divide x//365; /x assume non-leap year x/

as it does (an investigation I’ll leave for your free time).

Making it work

Let’s try to fix these regexes. With the first one, where !x[ˆ/] " inadvertently
matches the comment-ending ˙˙˙xx/, consider !/x([ˆx]<x+[ˆ/])+x/". The added
plus will, we think, have !x+[ˆ/] " match a row of x’s ending with something other
than a slash. Indeed it will, but due to backtracking, that “something other than a
slash” can still be x. At first, the greedy !x+ " matches that extra x as we want, but
backtracking will reclaim an x if needed to secure an overall match. So, it still
matches too much of:

/xx A xx/ foo() /xx B xx/

The solution comes back to something I’ve said before: say what you mean. If we
want “some x, if not followed by a slash” to imply that the non-slash also doesn’t
include an x, we should write exactly that: !x+[ˆ/x]". As we want, this stops it
fr om eating ‘˙˙˙xxx/’, the final x of a row of x that ends the comment. In fact, it has
the added effect of not matching any comment-ending x, so it leaves us at ‘˙˙˙xxx/’
to match the ending delimiter. Since the ending delimiter part had been expecting
just the one x, it won’t match until we insert !x+/" to allow this final case.
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Tr anslating Between English and Regex
On page 273, when discussing two ways one might consider the C comment
“anything that is not the ending delimiter,” I presented one idea as

“ x, so long as not followed by a slash: !x[ˆ/] " ”
and another as:

“ a  slash, so long as not preceded by x: ![ˆx]/ " ”

In doing so, I was being informal— the English descriptions are actually quite
dif ferent from the regexes. Do you see how?

To see the differ ence, consider the first case with the string ‘regex’ — it cer-
tainly has an x not followed by a slash, but it would not be matched by
match !x[ˆ/] ". The character class requir es a character to match, and
although that character can’t be a slash, it still must be something, and there’s
nothing after the x in ‘regex’. The second situation is analogous. As it turns
out, what I need at that point in the discussion are those specific expres-
sions, so it’s the English that is in error.

If you have lookahead, “x, so long as not followed by a slash” is simply
!x(?!/) ". If you don’t, you might try to get by with !x([ˆ/]<$)". It still
matches a character after the x, but can also match at the end of the line. If
you have lookbehind, “slash, so long as not preceded by x” becomes
!(?<!x)/ ". If you don’t have it, you have to make due with !(ˆ<[ˆx])/".

We won’t use any of these while working with C comments, but it’s good to
understand the issue.

This leaves us with: !/x([ˆx]<x+[ˆ/x])+x+/ " to match our pseudo comments.

Phew! Somewhat confusing, isn’t it? Real comments (with + instead of x) requir e
!/\+([ˆ+]<\++[ˆ/+])+\++/ " which is even more confusing. It’s not easy to read;
just remember to keep your wits about you as you carefully parse complex
expr essions in your mind.

Unrolling the C loop

For efficiency’s sake, let’s look at unrolling this regex. Table 6-3 on the next page
shows the expressions we can plug in to our unrolling-the-loop pattern.

Like the subdomain example, the !nor mal+ " is not actually free to match nothing-
ness. With subdomains, it was because the normal part was not allowed to be
empty. In this case, it’s due to how we handle the two-character ending delimiter.
We ensur e that any nor mal sequence ends with the first character of the ending
delimiter, allowing special to pick up the ball only if the following character does
not complete the ending.
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Table 6-3: Unr olling-the-Loop Components for C Comments

!opening normal+ ( specialspecial normal+ )+ closing "

Item What We Want Regex

opening start of comment /x
nor mal+ comment text up to, and including, one or more ‘x’ [ˆx]+x+
special something other than the ending slash (and also not ‘x’) [ˆ/x]
closing trailing slash /

So, plugging these in to the general unrolling pattern, we get:

!/x[ˆx]+x+([ˆ/x][ˆ/x] [ˆx]+x+)+/".

Notice the spot marked with ? The regex engine might work to that spot in two
ways (just like the expression on page 266). The first is by progr essing to it after
the leading !/x[ˆx]+x+ ". The second is by looping due to the (˙˙˙)+. Via either
path, once we’re at that spot we know we’ve matched x and are at a pivotal point,
possibly on the brink of the comment’s end. If the next character is a slash, we’re
done. If it’s anything else (but an x, of course), we know the x was a false alarm
and we’re back to matching normal stuff, again waiting for the next x. Once we
find it, we’re right back on the brink of excitement at the marked spot.

Retur n to reality
!/x[ˆx]+x+([ˆ/x][ˆx]+x+)+/" is not quite ready to be used. First, of course,
comments are /+ ˙˙˙ +/ and not /x ˙˙˙x/. This is easily fixed by substituting each x

with \+ (or, within character classes, each x with +) :

!/\+[ˆ+]+\++([ˆ/+][ˆ+]+\++)+/"

A use-r elated issue is that comments often span across lines. If the text being
matched contains the entire multiline comment, this expression should work. With
a strictly line-oriented tool such as egr ep, though, there is no way to apply a regex
to the full comment. With most utilities mentioned in this book, you can, and this
expr ession might be useful for, say, removing comments.

In practical use, a larger problem arises. This regex understands C comments, but
does not understand other important aspects of C syntax. For example, it can
falsely match where ther e is no comment:

const char +cstart = "/+", +cend = "+/";

We’ll develop this example further, right in the next section.
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The Freef lowing Regex
We just spent some time constructing a regex to match a C comment, but left off
with the problem of how to stop comment-like items within strings from being
matched. Using Perl, we might mistakenly try to remove comments with:

$prog =˜ s{/\+[ˆ+]+\++(?:[ˆ/+][ˆ+]+\++)+/}{}g; # remove C comments (and more!)

Text in the variable $prog that is matched by our regex is removed (that is,
replaced by nothing). The problem with this is that there’s nothing to stop a match
fr om starting within a string, as in this C snippet:

char +CommentStart = "/+"; /, start of comment ,/
char +CommentEnd = "+/"; /, end of comment ,/

Her e, the underlined portions are what the regex finds, but the bold portions are
what we wish to be found. When the engine is searching for a match, it tries to
match the expression at each point in the target. Since it is successful only from
wher e a comment begins (or where it looks like one begins), it doesn’t match at
most locations, so the transmission bump-along bumps us right into the double-
quoted string, whose contents look like the start of a comment. It would be nice if
we could tell the regex engine that when it hits a double-quoted string, it should
zip right on past it. Well, we can.

A Helping Hand to Guide the Match
Consider:

$COMMENT = qr{/\+[ˆ+]+\++(?: [ˆ/+][ˆ+]+\++)+/}; # regex to match a comment
$DOUBLE = qr{"(?:\\.;[ˆ"\\])+"}; # regex to match double-quoted string
$text =˜ s/$DOUBLE;$COMMENT//g;

Ther e ar e two new things here. One is that this time the regex operand,
$DOUBLE;$COMMENT, is made up of two variables, each of which is constructed
with Perl’s special qr/˙˙˙/ regex-style “double-quoted string” operator. As discussed
at length in Chapter 3 (+ 101), one must be careful when using strings that are
meant to be interpreted as regular expressions. Perl alleviates this problem by pro-
viding the qr/˙˙˙/ operator, which treats its operand as a regular expression, but
doesn’t actually apply it. Rather, it retur ns a “regex object” value that can later be
used to build up a larger regular expression. It’s extremely convenient, as we saw
briefly in Chapter 2 (+ 76). Like m/˙˙˙/ and s/˙˙˙/˙˙˙/, you can pick delimiters to
suit your needs (+ 71), as we’ve done here using braces.

The other new thing here is the matching of double-quoted strings via the
$DOUBLE portion. When the transmission has brought us to a position where the
$DOUBLE part can match, it will do so, thereby bypassing the whole string in one
fell swoop. It is possible to have both alternatives because they are entir ely
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unambiguous with respect to each other. When applied to a string, as you read
fr om the beginning, any point in the text that you start at is:

• Matchable by the comment part, thereby skipping immediately to the end of
the comment, or...

• Matchable by the double-quoted string part, thereby skipping immediately to
the end of the string, or...

• Not matchable by either, causing the attempt to fail. This means that the nor-
mal bump-along will skip only the one, uninteresting character.

This way, the regex will never be started fr om within a string or comment, the
key to its success. Well, actually, right now it isn’t helpful yet, since it removes the
strings as well as the comments, but a slight change puts us back on track.

Consider:

$COMMENT = qr{/\+[ˆ+]+\++(?: [ˆ/+][ˆ+]+\++)+/}; # regex to match a comment
$DOUBLE = qr{"(?:\\.;[ˆ"\\])+"}; # Regex to match double-quoted string
$text =˜ s/($DOUBLE);$COMMENT/$1/g;

The only differ ences ar e that we’ve:

• Added the parentheses to fill $1 if the match is via the string alternative. If the
match is via the comment alternative, $1 is left empty.

• Made the replacement value that same $1. The effect is that if a double-quoted
string is matched, the replacement is that same double-quoted string — the
string is not removed and the substitute becomes an effective no-op (but has
the side effect of getting us past the string, which is the reason to add it in the
first place). On the other hand, if the comment alternative is the one that
matches, the $1 is empty, so the comment is replaced by nothingness just as
we want.†

Finally, we need to take care of single-quoted C constants such as ’\t’ and the
like. This is easy — we simply add another alternative inside the parentheses. If we
would like to remove C++/Java/C# style // comments too, that’s as simple as
adding !//[ˆ\n]+ " as a fourth alternative, outside the parentheses:

$COMMENT = qr{/\+[ˆ+]+\++(?: [ˆ/+][ˆ+]+\++)+/}; # regex to match a comment
$COMMENT2 = qr{//[ˆ\n]+}; # regex to match a C++ // comment
$DOUBLE = qr{"(?:\\.;[ˆ"\\])+"}; # regex to match double-quoted string
$SINGLE = qr{’(?:\\.;[ˆ’\\])+’}; # regex to match single-quoted string

$text =˜ s/($DOUBLE;$SINGLE);$COMMENT;$COMMENT2/$1/g;

† In Perl, if $1 is not filled during the match, it’s given a special “no value” value “undef”. When used
in the replacement value, undef is treated as an empty string, so it works as we want. But, if you
have Perl warnings turned on (as every good programmer should), the use of an undef value in this
way causes a warning to be printed. To avoid this, you can use the ‘no warnings;’ pragma before
the regular expression is used, or use this special Perl form of the substitute operator:

$text =˜ s/($DOUBLE );$COMMENT/defined($1) ? $1 : ""/ge;
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The basic premise is quite slick: when the engine checks the text, it quickly grabs
(and if appropriate, removes) these special constructs. On my system, this Perl
snippet took about 16.4 seconds to remove all the comments from a 16-megabyte,
500,000-line test file. This is fast, but we’ll speed it up considerably.

A Well-Guided Regex is a Fast Regex
With just a little hand holding, we can help direct the flow of the regex engine’s
attention to match much faster. Let’s consider the long spans of normal C code
between the comments and strings. For each such character, the regex engine has
to try each of the four alternatives to see whether it’s something that should be
gobbled up, and only if all four fail does it bump-along to bypass the character as
uninter esting. This is a lot of work that we really don’t need to do.

We know, for example, that for any of the alternatives to have a chance at match-
ing, the lead character must be a slash, a single quote, or a double quote. One of
these doesn’t guarantee a match, but not being one does guarantee a non-match.
So, rather than letting the engine figure this out the slow and painful way, let’s just
tell it directly by adding ![ˆ’"/] " as an alternative. In fact, any number of such
characters in a row can be scooped right up, so let’s use ![ˆ’"/]+ " instead. If you
remember the neverending match, you might feel worried about the added plus.
Indeed, it could be of great concern if it wer e within some kind of (˙˙˙)+ loop, but
in this stand-alone case it’s quite fine (there’s nothing that follows that could force
it to backtrack at all). So, adding:

$OTHER = qr{[ˆ"’/]}; # Stuf f that couldn’t possibly begin one of the other alternatives

+
+
+

$text =˜ s/($DOUBLE;$SINGLE;$OTHER+);$COMMENT;$COMMENT2/$1/g;

For reasons that will become apparent after a bit, I’ve put the plus quantifier after
$OTHER, rather than part of the contents of $OTHER.

So, I retry my benchmarks, and wow, this one change cuts the time by over 75%!
We’ve crafted the regex to remove most of the overhead of having to try all the
alter natives so often. There are still a few cases where none of the alternatives can
match (such as at ‘c / 3.14’), and at such times, we’ll have to be content with
the bump-along to get us by.

However, we’r e not done yet—we can still help the engine flow to a faster match:

• In most cases, the most popular alternative will be !$OTHER+ ", so let’s put that
first inside the parentheses. This isn’t an issue for a POSIX NFA engine because
it must always check all alternatives anyway, but for a Traditional NFA, which
stops once a match has been found, why make it check for relatively rare
matches before checking the one we believe will match most often?
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• After one of the quoted items matches, it will likely be followed by some
$OTHER befor e another string or a comment is found. If we add !$OTHER+ " after
each item, we tell the engine that it can immediately flow right into matching
$OTHER without bothering with the /g looping. This is similar to the unrolling-
the-loop technique. In fact, unrolling the loop gains much of its speed from
the way it leads the regex engine to a match, using our global knowledge to
cr eate the local optimizations that feed the engine just what it needs to work
quickly.

Note that it is very important that this $OTHER, added after each string-match-
ing subexpression, be quantified with star, while the previous $OTHER (the one
we moved to the head of the alternation) be quantified by plus. If it’s not
clear, consider what could happen if the appended $OTHER had plus and there
wer e, say, two double-quoted strings right in a row. Also, if the leading
$OTHER used star, it would always match!

These changes yield

!($OTHER+;$DOUBLE$OTHER+;$SINGLE$OTHER+)<$COMMENT<$COMMENT2 "

as the regex, and further cuts the time by an additional five percent.

Let’s step back and think about these last two changes. If we go to the trouble of
scooping up $OTHER+ after each quoted string, there are only two situations in
which the original $OTHER+ (which we moved to be the first alternative) can
match: 1) at the very start of the whole s/˙˙˙/˙˙˙/g, befor e any of the quoted strings
get a chance to match, and 2) after any comment. You might be tempted to think
“Hey, to take care of point #2, let’s just add $OTHER+ after the comments as well!”
This would be nice, except everything we want to keep must be inside that first
set of parentheses — putting it after the comments would throw out the baby code
with the comment bathwater.

So, if the original $OTHER+ is useful primarily only after a comment, do we really
want to put it first? I guess that depends on the data — if there are mor e comments
than quoted strings, then yes, placing it first makes sense. Otherwise, I’d place it
later. As it tur ns out with my test data, placing it first yields better results. Placing it
later takes away about half the gains we achieved in the last step.

Wrapup
We’r e not quite done yet. Don’t forget, each of the quoted-string subexpressions is
ripe for unrolling — heck, we spent a long section of this chapter on that very
topic. So, as a final change, let’s replace the two string subexpressions with:
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$DOUBLE = qr{"[ˆ"\\]+(?:\\.[ˆ"\\]+)+"};
$SINGLE = qr{’[ˆ’\\]+(?:\\.[ˆ’\\]+)+’};

This change yields yet another 15 percent gain. Just a few changes has sped things
up from 16.4 seconds to 2.3 seconds—a speedup of over 7×.

This last change also shows how convenient a technique it can be to use variables
to build up a regular expression. Individual components, such as $DOUBLE, can be
consider ed in relative isolation, and can be changed without having to wade into
the full expression. There are still some overall issues (the counting of capturing
par entheses, among others) that must be kept in mind, but it’s a wonderful
technique.

One of the features that makes it so convenient in this case is Perl’s qr/˙˙˙/ opera-
tor, which acts like a regex-r elated type of “string.” Other languages don’t have this
exact functionality, but many languages do have string types that are amenable to
building regular expressions. See “Strings as Regular Expressions” starting on
page 101.

You’ll particularly appreciate the building up of regular expressions this way when
you see the raw regex. Here it is, broken across lines to fit the page:

([ˆ"\’/]+;"[ˆ"\\]+(?:\\.[ˆ"\\]+)+"[ˆ"\’/]+;’[ˆ’\\]+
(?:\\.[ˆ’\\]+)+’[ˆ"\’/]+);/\+[ˆ+]+\++(?:[ˆ/+][ˆ+]+\++)+/;//[ˆ\n]+

In Summary: Think!
I’d like to end this chapter with a story that illustrates just how much benefit a lit-
tle thought can go when using NFA regular expressions. Once when using GNU

Emacs, I wanted a regex to find certain kinds of contractions such as “don’t,” “I’m,”
“we’ll,” and so on, but to ignore other situations where a single quote might be
next to a word. I came up with a regex to match a word, !\<\w+ ", followed by the
Emacs equivalent of !’([tdm];re;ll;ve) ". It worked, but I realized that using
!\<\w+ " was silly when I needed only \w. You see, if there is a \w immediately
befor e the apostrophe, \w+ is certainly there too, so having the regex check for
something we know is there doesn’t add any new information unless I want the
exact extent of the match (which I didn’t, I merely wanted to get to the area).
Using \w alone made the regex more than 10 times faster.

Yes, a little thought can go a long way. I hope this chapter has given you a little to
think about.
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